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ABSTRACT 

DEVELOPMENT OF FUZZY SYSTEM AND NONLINEAR REGRESSION MODELS 
FOR OZONE AND PM2.5 AIR QUALITY FORECASTS 

Yiqiu Lin 

March 8, 2007 

Ozone forecast models using nonlinear regression (NLR) have been successfully 

applied to daily ozone forecast for seven metro areas in Kentucky, including Ashland, 

Bowling Green, Covington, Lexington, Louisville, Owensboro, and Paducah. In this 

study, the updated 2005 NLR ozone forecast models for these metro areas were evaluated 

on both the calibration data sets and independent data sets. These NLR ozone forecast 

models explained at least 72% of the variance of the daily peak ozone. Using the models 

to predict the ozone concentrations during the 2005 ozone season, the metro area mean 

absolute errors (MAEs) of the model hindcasts ranged from 5.90 ppb to 7.20 ppb. For the 

model raw forecasts, the metro area MAEs ranged from 7.90 ppb to 9.80 ppb. 

Based on previously developed NLR ozone forecast models for those areas, 

Takagi-Sugeno fuzzy system models were developed for the seven metro areas. The 

fuzzy "c-means" clustering technique coupled with an optimal output predefuzzification 

approach (least square method) was used to train the Takagi-Sugeno fuzzy system. Two 

types of fuzzy models, basic fuzzy and NLR-fuzzy system models, were developed. The 

basic fuzzy and NLR-fuzzy models exhibited essentially equivalent performance to the 
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existing NLR models on 2004 ozone season hindcasts and forecasts. Both types of fuzzy 

models had, on average, slightly lower metro area averaged MAEs than the NLR models. 

Among the seven Kentucky metro areas Ashland, Covington, and Louisville are 

currently designated nonattainment areas for both ground level 0 3 and PM2.5. In this 

study, summer PM2.5 forecast models were developed for providing daily average PM2.5 

forecasts for the seven metro areas. The performance of the PM2.5 forecast models was 

generally not as good as that of the ozone forecast models. For the summer 2004 model 

hindcasts, the metro-area average MAE was 5.33~g/m3. 

Exploratory research was conducted to find the relationship between the winter 

PM2.5 concentrations and the meteorological parameters and other derived prediction 

parameters. Winter PM2.5 forecast models were developed for seven selected metro areas 

in Kentucky. For the model fits, the MAE for the seven forecast models ranged from 3.23 

~g/m3 to 4.61 ~g/m3 (~26 - 28% NMAE). The fuzzy technique was also applied on PM2.5 

forecast models to seek more accurate PM2.5 prediction. The NLR-fuzzy PM2.5 had 

slightly better performance than the NLR models. 
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CHAPTER I 

INTRODUCTION 

Ground level ozone (03) is one of the six criteria air pollutants that are commonly 

found throughout the United States. The six criteria pollutants consist of ground level 0 3, 

fine particulate matter (PM2.S), carbon monoxide (CO), nitrogen dioxide (NOx), sulfur 

dioxide (S02), and lead. Ground level 0 3, even at low levels, can adversely affect human 

health. Prolonged exposure to 0 3 concentrations over a certain level may cause severe 

health problems including permanent lung damage, aggravated asthma, or other 

respiratory illnesses. Ground level 0 3 can also have detrimental effects on plants and 

ecosystems, including damage to plants, reductions of crop yield, and increase of 

vegetation vulnerability to disease (EPA, 2005a). 

The U.S. Environmental Protection Agency (EPA) has set National Ambient Air 

Quality Standards (NAAQS) for the six criteria pollutants to protect public health 

(primary standard) and public welfare (secondary standard). Before 1997, the sole 

NAAQS for ozone was based on 1-hr average concentration, not to exceed 0.12 ppm. In 

July 1997, based on scientific studies showing that prolonged exposure to ozone levels at 

concentrations well below the 0.12 ppm standard causes adverse health effects in children 

and in healthy adults engaged in outdoor activities, EPA promulgated a more protective 

standard for ozone. The new primary standard and secondary standard are the same, viz. 
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0.08 ppm for 8-br average ozone concentration. To attain this standard, the 3-year 

average of the fourth-highest daily maximum 8-hour average ozone concentrations 

measured at each monitor within an area over each year must not exceed 0.08 ppm (EPA, 

2005b). Though ground-level 0 3 air quality has significantly improved in the past two 

decades, it remains a critical problem in many communities in the US. Currently there are 

255 counties designated as ozone nonattainment areas, based on the NAAQS. Moreover, 

twenty million people live in nineteen counties designated as "Serious" or "Severe" 

ozone non attainment areas (EPA, 2005c). 

An accurate ozone forecast model can be used to issue alerts in anticipation of 

high 0 3 levels so that community action can be taken to reduce the emission of 0 3-

forming compounds in order to avoid a NAAQS exceedence (Hubbard, 1997). It also can 

provide advanced warning of potentially unhealthful air quality for the people living in 

these areas. Since 1997, nonlinear regression (NLR) ozone forecast models have been 

developed and implemented by the University of Louisville for the Louisville 

metropolitan statistical area (MSA). The Louisville MSA was one of the ozone 

nonattainment areas in Kentucky. This NLR model uses a group of meteorological 

parameters as the input predictor variables. It was designed to predict the daily maximum 

8-br average 0 3 concentrations among all of the ozone monitors within the metro area. 

Following the successful implementation of the NLR model for Louisville, more NLR 

ozone forecast models were developed for selected metro areas in Kentucky. In 2005, 

there were seven NLR models running on an automated basis, providing ozone forecasts 

for the Ashland, Owensboro, Bowling Green, Covington, Lexington, Louisville, and 

Paducah metro areas. These models have been updated each year, using the 
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meteorological and air quality data from the most recent five year period. One of the 

objectives in this dissertation is evaluating the 2005 NLR ozone forecast models for the 

seven metro areas in Kentucky. 

Previous NLR models have performed well on ozone prediction. For example, for 

the seven models fitted to 1999-2003 databases, the mean absolute error (MAE) of the fit 

was typically about 7 ppb, or about 12% of the mean daily peak ozone concentration for 

the period. Typically the MAEs of the 2004 ozone season forecasts were only about 1- 2 

ppb higher than for the original model fits, working out to about 15% of the seasonal 

mean concentrations. These model performance statistics compare favorably with those 

of other 0 3 air quality models reported in the literature. 

Fuzzy modeling is a tool aimed at using the information observed from a complex 

phenomenon to derive a quantitative model. In recent years, fuzzy methods have been 

applied to air pollutant forecasting. It has been reported in several papers that fuzzy 

models performed well on ozone forecasts (Jorquera et aI, 1998, Heo et aI, 2004, and 

Ryoke et aI, 2000). Developments of the NLR ozone forecast models provided complete 

databases and a group of ozone predictor variables for development of fuzzy models. 

Another objective of this dissertation was to develop ozone fuzzy system forecast models 

for the seven metro areas and compare the performance of fuzzy models and NLR models. 

A secondary objective, which arose during the course of the research, was to construct 

combined NLR-Fuzzy system models for comparison with the NLR models. 

Fine particulate matter (PM2.5) is an important pollutant among the six criteria 

pollutants. PM2.5 consists of microscopic particles that can penetrate deep into the lungs 

and cause health problems. People with heart or lung diseases are the most likely to be 
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affected by PM2.5 pollution. Even healthy people may experience temporary symptoms 

from exposure to elevated levels ofPM2.5 pollution. Health problems caused by PM2.5 

pollution include increase of respiratory disease symptoms, decrease of lung function, 

developments of chronic bronchitis, nonfatal heart attacks, and premature death in people 

with heart or lung disease. Fine particles can be carried over long distances by wind and 

then deposited on ground or water through dry or wet deposition. The wet deposition is 

often acidic, due to the presence of acidic compounds such as sulfuric acid. Fine particles 

containing sulfuric acid contribute to rain acidity, or "acid rain". The effects of acid rain 

include changing the nutrient balance in water and soil, damaging sensitive forests and 

farm crops, and affecting the diversity of ecosystems. PM2.5 pollution is also the major 

cause of visibility reduction that frequently occurs in many areas in the United States 

(EPA, 2005a). 

The NAAQS for Total Suspended Particles (TSP) were first established in 1971. 

In 1987, EPA revised the particulate matter (PM) standards and replaced TSP with 

particles smaller than 10 micrometers (PMJO). Ten years later, after a lengthy review, 

EPA revised the PM standards, setting separate standards for particles smaller than 2.5 

micrometers (PM2.5). Until recently, applicable NAAQS for PM2.5 were 15.0 Jlg/m3 for 

the annual mean concentration and 65.0 Jlg/m3 for the 24-hr mean. In December 2006 the 

U.S. EPA lowered the 24-hr NAAQS for PM2.5 to 35 Jlg/m3, based on review of recent 

health studies. The primary standards and secondary standards are the same. For 

designation ofNAAQS attainment for PM2.5, the 3-year average of the 98th percentile of 

24-hour concentrations at each population-oriented monitor within an area must not 

exceed 35 Jlglm3 and the 3-year average of the annual arithmetic mean PM2.5 
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concentrations from single or multiple community-oriented monitors must not exceed 

15.0 Ilg/m3 (EPA, 2005b). 

Among the six criteria pollutants, PM2,5 was responsible for the second most 

violations ofNAAQS in the U.S, next to ground-level ozone. In 2005, 88 million people 

lived in 208 counties designated as PM2,5 nonattainment areas. Most of the PM2,5 

nonattainment areas were also ozone nonattainment areas (EPA, 2005c). In Kentucky, 

Covington, Ashland, and Louisville are currently nonattainment areas for both ozone and 

PM2,5. To provide the air pollutant nonattainment areas a better chance to meet the 

NAAQS and issue advanced alerts on potentially unhealthful air quality days for sensitive 

people (Groups that are sensitive to ozone or PM2,5 include children and adults who are 

active outdoors, and people with respiratory disease), NLR PM2,5 forecast models were 

developed for selected metro areas in Kentucky. Also NLR-Fuzzy system PM2.5 forecast 

models were developed to seek better model performance. 

In summary, the objectives of this study were: 

1. Evaluating the updated NLR ozone forecast models for selected metro areas in 

Kentucky. 

2. Developing combined NLR-Fuzzy system ozone forecast models, and comparing 

the model performance with that of the NLR models. 

3. Developing NLR PM2,5 forecast models for selected metro areas in Kentucky, and 

evaluating the model performance based upon the fitted data. 

4. Developing NLR-Fuzzy system PM2,5 forecast models, and comparing the 

performance of the NLR-Fuzzy system models and NLR models. 
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2.1 Ground level Ozone 

CHAPTER II 

BACKGROUND 

Ozone is an odorless, colorless gas. The ozone molecule is composed of three 

atoms of oxygen (03). Ground level ozone refers to the ozone in the earth's lower 

atmosphere. It is not released directly into air, but formed by complex chemical reactions 

between volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the 

atmosphere. Sunlight plays an important role in ozone formation. The ultraviolet 

radiation splits a single oxygen atom off the N02; via a process called photolysis. 

N02 +hv ~ NO+O (2.1) 

The oxygen atom combines with oxygen (02) in the air to form ozone (03). 

O 2 +0 ~ 0 3 (2.2) 

In unpolluted air, the nitric oxide formed in reaction (2.1) combines with 0 3 to reform 

N02 and O2, thus completing the NO-N02-03 photolytic cycle. 

NO+0 3 ~ N02 +02 

In polluted air, complex system of reactions involving volatile organic compounds 

(VOCs) and nitric oxide (NO) competes with ozone in oxidizing NO (as in Equation 

(2.4)), thus leading to a buildup of 0 3 from reaction (2.2). 

(2.3) 

VOC+NO+sunlight ---+ N0 2 + CH3COOON0 2(PAN) + aerosol + other products (2.4) 
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Ground level ozone concentration depends on not only the concentrations of NO x 

and VOC concentrations, but also the VOCINOx ratio. At high VOCINOx ratios, ozone 

formation is controlled by the amount of NO x available, and reaction (2.4) is the main 

route to regenerate N02 from NO. Under this "NOx-limited" situation, decreasing NOx 

reduces ozone, while decreasing VOC has little or no effect on ozone. But at low 

VOCINOx, ozone formation is limited by the amount ofVOC available for reaction (2.4), 

and reaction (2.3) becomes the main route to regenerate N02 from NO. In addition, at 

low VOCINOx, N02 competes with VOC to react with OR radicals, slowing the rate of 

reaction (2.4). Under this "VOC-limited" condition, reducing VOC reduces ozone, but 

reducing NOx increases ozone (Schwartz, 2006). 

Many urban areas tend to have high levels of ground-level 0 3. Some rural areas 

are also subject to elevated 0 3 levels because wind carries ozone and its precursor 

pollutants hundreds of miles from their original sources. Sunlight and hot weather cause 

ground-level ozone to form in harmful concentrations in the air. As a result, 0 3 is known 

as a summertime air pollutant. Previous studies have shown that meteorological factors 

significantly affect ground level 0 3 concentratilons (Rev lett, 1978; Wolff and Lioy, 1978). 

Daily maximum temperature, relative humidity, and wind speed are among the factors 

that are strongly related to 0 3 concentrations. The relationship between these vital 

parameters and 0 3 concentrations can be represented by nonlinear functions, such as 

higher order polynomial or exponential function. The other predictor meteorological 

parameters, including cloud cover, precipitations, atmospheric transmittance, etc, 

approximately linearly correlated with 0 3 concentrations (Lin, 2004). 
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VOC emissions are produced from numerous combustion sources such as 

automobiles and power plants, and also industrial processes such as paint coating, 

printing, and organic chemical producing. NOx emissions are produced primarily when 

fossil fuels are burned in power plants, motor vehicles, and industrial boilers. The 

emission of NO x from power plants has played a significant role in the phenomena of 

long-range transport of 0 3 and its precursors. By the early 1990s, a new technology for 

controlling NOx emission, called selective catalytic reduction (SCR), had been 

demonstrated to be highly effective in reducing NOx emissions from large sources 

(Forzatti, 2001). Following the wide availability ofSCR technology in the United States, 

EPA in 1997 issued the NOx state implementation plan (SIP) call, aimed to mitigate 

significant transport ofNOx. Under this regulation, many states, particularly in the 

Midwest, were required to reduce NOx emissions from point sources dramatically by 

2003, through their SIPs. Motor vehicles are the other main source of NO x and VOC 

emissions. Nationally, the Clean Air Act Amendments of 1990 mandated increasingly 

stringent rules to reduce car and truck tailpipe emissions. 

NOx emissions indeed have been reduced due to application of new technology 

and implementations of pollutant reduction strategies over the past several years. The 

nationwide NOx emissions total decreased 15% from 1983 to 2002, and decreased 12% 

from 1993 to 2002 (EPA, 2005d). In Kentucky, NOx emissions from point sources totaled 

1,624,600 tons in 2002, down 33% from 1998 totals. In the Midwestern states bordering 

Kentucky (MO, IL, IN, OR, WV, V A, and TN), NOx emissions from regulated utilities 

in that area totaled 224,490 tons in 2002, down 22% from 1998 totals (Cobourn and Lin, 

2004). 
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Reductions in NOx and VOC emissions have resulted in improvements in ozone 

air quality across the country. Since 1980, I-hr average 0 3 concentrations have been 

reduced by 29% and 8-hour average 0 3 concentrations have been reduced by 21 %. 

Between 1990 and 2003 there was a 16% improvement for I-hr average 0 3 

concentrations and 9% reduction for 8-hr average 0 3 concentrations (EPA, 2005e). In 

Kentucky, Cobourn and Lin (2004) have studiE:d the 8-hr ground level ozone trend in 

recent years for seven metro areas: Ashland, Bowling Green, Covington, Lexington, 

Louisville, Owensboro, and Paducah. In the period 2000-2004, there has been a 

downward trend in upper-end 0 3 concentrations (represented by annual 8th maximum) for 

each of the metro areas. On average, the 0 3 concentrations declined by about 10 ppb 

(13%) during that period. The 0 3 concentrations are strongly affected by meteorology. To 

discern an ozone trend associated with the huge effort of air pollution controls, 

meteorologically adjusted 03 concentrations were estimated using the nonlinear 

regression models developed for these areas. It was demonstrated in the study that the 

meteorologically adjusted 0 3 concentrations also have a downward trend for each of the 

metro areas, with greater certainties than the unadjusted 0 3 concentrations. On average, 

the meteorologically adjusted 0 3 declined by about 10% from 2000 to 2004 (Cobourn 

and Lin, 2004). 
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2.2 Fine Particulate Matter (PM2.5) 

Particulate matter is the term for atmospheric particles, including dust, dirt, soot, 

smoke, and liquid droplets. PM2.5 is the fine particulate matter consisting of particles with 

diameter 2.5 ).lm or smaller. PM2.5 consists of primary particles, which are directly 

emitted into the air, and secondary particles, which form in the atmosphere from 

chemical reactions involving common gaseous pollutants. Primary PM2.5 particulate 

results largely from eombustion of fossil or biomass fuels and selected industrial 

processes. The sources of PM2.5 include, but are not limited to, gasoline and diesel 

combustion, wood stoves and fireplaces, land clearing, wild land prescribed burning, and 

wild fires. Secondary PM2.5 forms through homogeneous and heterogeneous chemical 

reactions that convert some common gaseous pollutants into very small particles. PM2.5 

precursors include sulfur oxide compounds (SOx), nitrogen oxide compounds (NOx), and 

VOCs. The observed PM2.5 concentrations are dominated by sulfur and nitrogen species 

in most locations. However, there can also be significant contributions from secondary 

organic aerosol in some locations (EPA, 1999).. Generally, the major components of 

PM2.5 are carbon, sulfate and nitrate compounds, and crustal materials. The chemical 

makeup of particles varies across the United States. In the air quality region of the 

industrial midwest, including Kentucky, sulfate compounds are the dominant component 

ofPM2.5 (~45%) and carbonaceous mass is the second (~35%). 

Implementation of EP A's air improvement programs has helped reduce PM2.5 and 

its precursors. The Acid Rain Program aimed to reduce releases of S02, NOx, and other 

pollutants that contributed to the formation of acid rain from coal-fired power plants. For 

the S02 portion of the Acid Rain Program, the first phase began in 1995 and targeted the 
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largest and highest emitting power plants. The second phase (started in 2000) set tighter 

restrictions on smaller plants. This program will reduce annual S02 emissions by 10 

million tons (almost halfthe 1980 level) between 1980 and 2010 (EPA, 2005f). The NOx 

portion of the Acid Rain Program has helped n~duce annual NOx emissions in the United 

States by over 400,000 tons per year between 1996 and 1999 (Phase I), and by 

approximately 1.17 million tons per year beginning in the year 2000 (Phase II, EPA, 

2005g). National ozone-reduction programs designed to reduce emissions of NO x and 

VOCs, such as the NOx SIP call and mandatory rules for reducing car and truck tailpipe 

emissions required by Clean Air Act Amendments, also have helped reduce carbon and 

nitrates, both of which are components of PM2.5. 

As a result of the implementation of EPA's air improvement programs, the 

national S02, NOx, and VOC emissions decreased 9%,9%, and 12%, respectively, from 

1999 to 2003. The nationwide annual average PM2.5 concentrations declined 10% over 

the same period. Red.uctions of estimated direct emissions resulted in a 5% decrease of 

PM2.5 concentrations. Decreases of the PM2.5 precursor emissions yielded additional 

reductions. In the industrial Midwest region which includes Kentucky, the annual average 

PM2.5 decreased 9% from 1999 to 2003 (EPA, 2004). 

The US EPA has promoted a more stringent 8-hr standard for ground-level 0 3 in 

1997. In December 2005 EPA proposed revisions to the NAAQS for particle pollution. 

EPA revised the air quality standards for particle pollution in 2006. The 2006 standards 

tighten the 24-hour fine particle standard from the current level of 65 micrograms per 

cubic meter (llg/m3) to 35 Ilg/m3, and retain the current annual fine particle standard at 15 

Ilglm3. The new PM2.5 standards became effective since December 17, 2006. It can be 
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expected that the 03 and PM2.5 problems will continue to draw public attention in the near 

future. 

2.3 Characteristics of the Seven Metro Areas 

The seven Kentucky metro areas selected for the study were Ashland, Bowling 

Green, Covington, Lexington, Louisville, Owensboro, and Paducah. All of these metro 

areas are multi-county areas (Figure 2.1). The Ashland, Covington, and Louisville are 

currently designated nonattainment areas for both ground level 0 3 and PM2.5 (EPA, 

2005c). Except for the Paducah metro area (MA), the other six are official U.S. Census 

Bureau metropolitan Statistical areas (MSA). The Covington, Louisville, and Owensboro 

MSAs include counties from bordering states. These metro areas vary substantially in 

popUlation. The Covington-Cincinnati MSA (Kentucky-Ohio) and Louisville MSA 

(Kentucky-Indiana) are the largest and second largest in popUlation, each at more than 1 

million. The Ashland-Huntington MSA (Kentucky-West Virginia-Ohio) and Lexington 

MSA are medium-sized at several hundred thousand. The Owensboro MSA is contiguous 

with the Evansville IN-KY MSA. The combim:d area is a medium-sized area of about 

450,000 in population. The Bowling Green MSA and Paducah MA are small, at about 

100,000 each (Coboum and Lin, 2004). 
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Figure 2.1 The seven metro areas with 0 3 and PM2.5 monitors located in Kentucky 

There are a variety ofPM2.5, VOC, and NOx emission sources in each of these 

areas. The emission sources include area sources, such as household and mobile sources, 

and point sources, including power plants, chemical plants, and various manufacturing 

facilities. The annual emissions and emission densities vary for each of the multi-county 

areas (Table 2.1). The estimated annual PM2.5 t:mission total varies from 2987 tons for 

Bowling Green to 26,677 tons for Owensboro. The average PM2.5 emission density varies 

from 2.8 t/yr/mi2 for Bowling Green to 17.5 t/}T/mi2 for Covington. Jefferson County, 

which contains the Clty of Louisville, has by far the highest PM2.5 emission density, at 

28.5 t/yr/mi2. Hamilton County (Covington MSA), Floyd County (Louisville MSA), 

Hancock County and Warrick County (Owensboro MSA) also have high PM2.5 emission 

densities, over 20 t/yr/mi2. 
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Table 2.1 Annual Pollutant Emissions in Selected Metro Areas in KY 

(MA=metro area, ED==emission density) 

MA 
Area 

Popul. 
PM2.5 ED VOCED NOxED S02ED [PM2.5]avg [03]avg 

(mi2) (t/yr/mi2) (t/yr/mi2) (t/yr/mi2) (t/yr/mi2) (ug/m3) (ppb) 

ASH 1654 27'1,882 4.3 14.7 23.0 12.4 18.3 57 

BWG 1084 12!i,980 2.8 10.8 10.1 3.5 15.7 56 

COV 967 1,156,111 17.5 70.5 106.3 108.8 18.6 60 

LEX 743 34G,700 5.6 33.8 27.7 6.1 17.0 52 

LOU 1780 1,028,243 10.9 46.0 65.5 63.0 17.7 59 

OWE 2363 40!i,386 11.3 15.6 52.8 99.1 16.5 56 

PAH 1123 11'1,863 3.9 7.7 30.9 30.8 14.3 56 

(Source: AirData - Reports and Maps, EPA, 2005h) 

VOC and NOx compounds are the important precursors for both ground level 

ozone and PM2.s. The estimated annual VOC emission total for each area varies from 

8658 tons (Paducah) to 81,842 tons (Louisville). The estimated total annual NOx 

emissions vary from 10,977 tons (Bowling Green) to 124,812 tons (Owensboro). The 

average VOC emission density varies from 7.7 t/yr/mi2 (Paducah) to 70.0 t/yr/mi2 

(Covington). The NOx emission density varies from 10.1 t/yr/mi2 (Bowling Green) to 

106.3 t/yr/mi2 (Covington). Jefferson County has the highest VOC and NOx emission 

densities (152.1 t/yr/mi2 and 232.7 t/yr/me). The Hamilton County is the next highest at 

118.9 t/yr/me for VOC and 171.2 t/yr/me for NUx. Several counties, such as McClean 

County (Owensboro MSA) and Edmonson County (Bowling Green MSA), have the VOC 

and NOx emission dt~nsities as low as about 2~3 t/yr/mi2. 

The VOC and NOx emission densities vary quite substantially between counties 

and also between the several metro areas. In contrast, the variation in pollutant 0 3 is 

relatively mild. The :five year (2000-2004) average summertime daily domain peak ozone 
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concentration ranged. from 52 ppb (Lexington) to 60 ppb (Covington). Nevertheless, the 

fact is that the greatest problems with ground level 03 tend to exist in areas where NOx 

and VOC emission densities are high, for example the Covington and Louisville metro 

areas (Table 2.1). Ch::arly these precursor pollutants lead to elevated ozone concentrations. 

Therefore, reductions in VOC and NOx emissions will lead to improved 0 3 air quality. 

Sulfate compounds comprise the biggest component ofPM2,5 in these Kentucky 

metro areas. The estimated annual S02 emission total for each area varies from 4508 t 

(Lexington) to 234,212 t (Owensboro). The average S02 emission density varies from 6.1 

t/yr/mi2 (Lexington) to 108.8 t/yr/mi2 (Covington). Floyd County has the highest S02 

emission densities (322.9 t/yr/mi2). The Hanco(:k County is the next highest at 301.7 

t/yr/mi2. 

The five year (1999-2003) average summertime daily averaged PM2,5 

concentration ranges from 14.3/lg/m3 (Paducah) to 18.6/lg/m3 (Covington). The high 

PM2,5 concentrations tend to occur in the areas with high emission densities ofVOC, NOx, 

and S02 (for example, Covington and Louisville). The only exception is Ashland: in this 

metro area, the emission densities ofVOC, NOx, and S02 were low but the average PM2,5 

concentration was relatively high (18.3/lg/m\ 
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CHAPTER III 

LITERATURE REVIEW 

Many kinds of ozone and PM2.5 forecast models have been described in the 

literature, including regression models, neural network (NN) models, photochemical 

transport models, fuzzy system models, and others. Some of the forecast models are 

being used to provide regional air quality guidance, such as the Community Multiscale 

Air Quality (CMAQ) model, or making local a:lr quality forecasts, such as the Houston 

Generalized Additive Model (GAM) and the University of Louisville NLR ozone 

forecast models. Most of these models have belen evaluated on calibration data sets 

(model fits). Some ofthem also have been validated on independent data sets using either 

observed meteorological data (model hindcasts) or forecast meteorological data (model 

forecasts) as model inputs. 

3.1 Ozone Forecast Models 

3.1.1 Regression Models 

Both linear regression and nonlinear regression models have been employed for 

ozone forecasting. The general purpose of a linear regression is to learn about the linear 

relationship between several independent variables and a dependent variable. With the 

ordinary least squares method, the linear regression procedure will compute model 
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predictions so that the squared deviations between modeled and observed concentrations 

are minimized. 

Robeson and Steyn (1990) tested a bivariate temperature and persistence linear 

regression model with the ozone data in Fraser Valley of British Columbia, Canada. It 

was concluded that the bivariate regression model was superior to an autoregressive 

integrated moving average (ARIMA) model and persistence model. Cha10u1akou et al. 

(2003) proposed a multiple regression model to forecast the next day's hourly maximum 

0 3 concentration in Athens, Greece. The set of the input variables consisted of eight 

meteorological parameters ,md three persistence variables, which were the hourly 

maximum 0 3 concentrations of the previous three days. Testing this linear regression 

model on four separate test datasets, the MAE ranged from 19.4% to 33.0% of the 

corresponding average 0 3 concentrations. Prybutok et al. (2000) built a simple linear 

regression model for forecasting the daily peak 0 3 concentration in Houston. The final 

model used four meteorological and 0 3 precursor parameters, including 0 3 concentration 

at 9:00 a.m., maximum daily temperature, average nitrogen dioxide concentration 

between 6:00 a.m. and 9:00 a.m. and average surface wind speed between 6:00 a.m. and 

9:00 a.m. The correlation coefficient R2 of this model was 0.47. The error statistics of the 

linear regression model were favorably compared with those of the neural network model 

built on the same database. 

Comrie (1997) developed basic multiple linear regression models and neural 

network models to compare their performance in eight selected cities. The meteorological 

input data were daily maximum temperature, average daily dew point temperature, 

average daily wind speed, and daily total sunshine. A total of 690 observations were used 
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for each of the eight cities. The subset of 440 observations was used to develop ozone 

forecast models and the other subset of 250 observations was used as a quasi-independent 

subset for model testing. The average observed ozone concentrations ranged from around 

40 to 66 ppb for the eight cities. Testing the multiple linear regression models with the 

quasi-independent subset of250 observed data, the model hindcasts exhibited MAEs 

from 8.24 to 13.46 ppb and R2 from 0.15 to 0.59. The NMAE, which is the ratio of MAE 

to average ozone concentration, ranged from 16% to 27%. The NN models exhibited 

MAEs from 7.01 to l2.41 ppb and R2 from 0.27 to 0.70. The NMAE ranged from 15% to 

24%. 

Nonlinear regression models are superior to simple linear regression models 

because they capture the nonlinear relationships between ozone and meteorological 

parameters. Bloomfield et al. (1996) described a nonlinear regression model to explain 

the effects of meteorology on 0 3 in the Chicago area. The model input variables 

consisted of a seasonal ternl, a linear annual trend term, and twelve meteorological 

variables, including maximum temperature, wind speed, wind direction, relative humidity, 

specific humidity, dew point temperature, totall cloud cover, opaque cloud cover, ceiling 

height, barometric pressure, and visibility. The observed ozone and meteorological data 

in 1981-1991 were divided into subsets for model development and validation. The 

model predictions of the model fits were within ±5 ppb about half the time, and within 

±16 ppb about 95% of the time. The RMSE was 8.2 ppb. The model was cross-validated 

using the indenpendent data subset. The overall RMSE of the cross-validated prediction 

errors was 8.3 ppb. Bloomfield et al. demonstrated that the meteorological data accounted 

for at least 50% of the variance of the ozone concentration. 
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Hubbard and Coboum (1998) developed a regression model to forecast next-day 

maximum I-hr ground-level 0 3 concentrations in Louisville, KY. The regression model 

included a nonlinear temperature term plus additional linear terms. The linear terms 

included atmospheric transmittance (or length of day), minimum temperature, cloud 

cover, rainfall, nighttime calms, and day of week. Coboum and Hubbard (1999) 

improved this NLR model by using an interactive nonlinear regression term based on 

maximum temperature, wind speed, and relative humidity. This model was called the 

hybrid model. It consisted of a standard model fitted to complete database and a Hi-Lo 

model fitted to the days on which the ozone concentrations were in the upper and lower 

10% of the ozone distribution. The model also included a trajectory parameter. For the 

testing period 1993-1997 (580 days), when keeping the same input variables but exclude 

the trajectory term, the 1999 model had 5.4% lower MAE (8.99 vs. 9.50 ppb), as 

compared to 1998 model. Inclusion of the trajectory parameter provided an additional 

decrease of MAE by 6.0% (8.45 vs. 8.99 ppb). 

Coboum et al. (2000) compared the performance of the NLR model with a three­

layer perception neural network (NN) for predicting daily maximum I-hr 0 3 

concentration in Louisville, by using data sets for 1998 and 1999 0 3 seasons. The model 

predictions were compared for the forecast mode and hindcast mode. For the hindcast 

mode, the NLR model exhibited MAEs of 11.0 and 11.2 ppb for the 1998 and 1999 

ozone seasons. The corresponding NMAEs were 15% and 16%. The NN model exhibited 

MAEs of 12.9 ppb for both of the two years. The NMAEs were 18% and 17% for the 

1998 and 199903 seasons respectively. The model forecasts of the NLR and NN model 

were comparable. The MAEs for both were around 13.0 for 1998 and 11.8 ppb for 1999. 
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The corresponding -r-.rMAEs were 18% and 15%. During the 1998 and 1999 ozone 

seasons, the forecast detection rate of 120 ppb threshold exceedances was 42% for each 

model on 12 exceed(mces. The hindcast detection rate was 92% for the NLR model and 

75% for the NN model. 

3 .1.2 Neural Network (NN) Models 

Artificial neural networks are collections of mathematical models that emulate 

some of the observed properties of biological nervous systems and draw on the analogies 

of adaptive biological learning. Artificial neural network models are designed to emulate 

human information processing capabilities such as knowledge processing, speech, 

prediction, classifications, and control. These models are capable of representing highly 

non-linear relationships, such as the relationship between ozone concentration and 

meteorological parameters. 

Chaloulakou et al. (2003) developed a NN forecast model to forecast the next 

day's maximum 1-hr ozone concentration in four locations within the Athens basin, 

Greece. The NN architecture was the feed forward, multi-layer perceptron topology, 

consisting of an input layer, a hidden layer, and an output layer. There were 11 nodes in 

the input layer (eight meteorological and three persistence variables) and one node in the 

output layer. The input meteorological variables included morning wind speed, nocturnal 

wind speed, solar radiation, relative humidity, temperature at 850 h Pa, temperature 

change at 850 h Pa from the previous day, surface temperature range and wind direction 

index. The three persistence variables referred to the maximum 1-hr 0 3 concentrations of 

the previous three days. The model fit of the NN models for the four locations had 
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NMAEs ranging from 19.4% to 33.0%. When using the European information threshold 

for 0 3 (180 Ilg/m3, or 91.8 ppb), the model detection rate ranged from 0.67 to 0.76 and 

the false alarm rate ranged from 0.48 to 0.56. In this study, the authors concluded that the 

NN model provided a considerable improvement in the forecasting of 0 3 concentrations 

over a linear regression model that used the same input parameters. 

An innovative neural network model was developed by Wang et al (2003), City 

University of Hong Kong. This model combines the adaptive radial basis function 

network with statistical characteristics of ozone to predict the 1-hr daily maximum ozone 

concentrations in selected specific areas. The: input parameters for the model included 

wind speed, maximum temperature, solar radiation, and the daily maximum 03 and NOx 

concentrations from the previous day. In predicting ozone concentrations of the area 

Tsuen Wan, Kwai Chung, and Kwun Tong for the entire year 2000, the MAEs of model 

hindcasts were 23.2, 26.3, and 24.8 Ilg/m3 (11.8, 13.4, and 12.7 ppb) respectively. 

Spellman (1999) described a neural network (NN) model used for predicting the 

ozone concentrations of five selected cities of the United Kingdom. This two layer NN 

model had only three predictive parameters, including maximum temperature, hours of 

sunshine, and previous day's ozone concentration. The model was evaluated on an 

independent data subset consisting of observed meteorological and air quality data. For 

the model hindcasts the MAEs ranged from 4.74 ppb to 9.30 ppb, the NMAEs ranged 

from 12% to 24%, and R2 ranged from 0.28 to 0.60 for five selected cities. 

Balaguer et al. (2002) used a finite impulse response NN model to make I-day 

advance predictions of 8-hr average ozone concentrations in eastern Spain. The input 

variables were observed 24 h lagged observed values of air quality and meteorological 
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inputs, including ambient concentrations of 0 3, NO, and N02, temperature, solar 

irradiance, atmospheric pressure, wind speed, and wind direction. The models were 

evaluated using data from the 1996 to 1999 ozone seasons (July to September). The 

statistics of the modd fits for three sampling sites ranged from 6.39 to 8.8 ppb for MAE 

and from 0.73 to 0.79 for R2. 

A NN model developed by Elkamel et al. (2001) was applied to predict ozone 

concentrations around a heavily industrialized area in Kuwait. The meteorological and air 

quality inputs to the neural network were wind speed, wind direction, relative humidity, 

daily maximum temperature, solar intensity and the concentration of the pollutants 

methane, carbon monoxide, carbon dioxide, nitrogen oxide, nitrogen dioxide, sulfur 

dioxide, non-methane hydrocarbons, and dust. This model was trained using data 

collected during a period of 60 days. The data fed to the neural network were divided into 

a training set and a testing set. The NMAEs for the training set and testing set were 

11.1 % and 12.5% respectively. 

3.1.3 Photochemical transport models 

Photochemical transport models are numerical models that simulate the transport and 

chemical transformation of pollutants in the atmosphere. There are two types of 

photochemical transport models: Eulerian models and Lagrangian models. Photochemical 

air quality models play an important role in scientific investigation of pollutant processes 

in the atmosphere and in development of policies to manage air quality. Early in 1973, 

Reynolds et al. created an Eulerian model, the Urban Airshed Model, for evaluating 

episodes and air pollution control measures (Russell and Dennis, 2000). After that, many 
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more photochemical transport models were applied to provide ozone trend analysis and 

ozone prediction. Most of them were of the Eulerian type, such as the Long Term Ozone 

Simulation Model, Regional Eulerian Model with 3 chemistry schemes, SARMAP air 

quality model, and Community Multi-scale Air Quality Model. 

The U.S. EPA developed the Community Multi-scale Air Quality (CMAQ) modeling 

system, an advanced air quality modeling syst~~m designed to approach air quality as a 

whole by including state-of-the-science capabilities for modeling multiple air quality 

issues (EPA, 2006). With the model's ability to handle a large range of spatial scales, 

CMAQ can be used for urban and regional scale model simulations. The CMAQ 

modeling system simulates various chemical and physical processes that are thought to be 

important for understanding atmospheric trace gas transformations and distributions. The 

components of CMAQ system included a meteorology-chemistry interface processor, a 

photolysis rate processor, an initial conditions processor, a boundary conditions 

processor, and the CMAQ chemical-transport model. One ofthe functions of CMAQ 

system is to provide guidance for 0 3 forecasting to the environmental management 

agencies all over the country. The CMAQ syst1em also has considerably ability to 

simulate the ambient 0 3 concentrations. Eder and Yu (2006) evaluated the performance 

of CMAQ (Version 4.4, released in 2004) covering the contiguous United States against 

monitoring data from four nationwide networks. For the simulations of the Peak l-hr and 

8-hr 0 3 concentrations during 2001 ozone season, the correlation coefficient (R) was 0.68 

and 0.69; the NMAE was 18.3% and 19.6%, respectively. 

Flemming et al. (2001) have employed the regional Eulerian model with 3 chemistry 

mechanisms (REM3), which was a photochemical transport model, operationally to 
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forecast ozone since 1997 at the Freie University, Berlin. The vertical resolution of the 

model was based on three dynamically changing layers. The chemical mechanism CBM4 

was used in the model. The model has been used for making 1, 2, and 3 day advance 

ozone forecasts with data over Germany from 1997 to 1999, the correlation coefficient 

(R) spread from 0.9 to 0.77. The disadvantage of this model was that it tended to 

underestimate the low ozone concentrations. 

Another example of an Eulerian model is a photochemical grid model that was used 

to analyze two ozone episodes in autumn (2000) and winter (2001) seasons in Kaohsiung, 

Taiwan (Chen et aI., 2003). CAMx-2.0 was used in this model, which is a three­

dimensional, Eulerian photochemical-transport grid model. Meteorological conditions, 

such as wind field, temperature, pressure, relative humidity, and period of sunshine, were 

collected as input data. This model has been applied for simulating the variation of 0 3 

levels for selected episodes. For the autumn episodes, R2 was 0.865, the coefficient of 

variation (S) was 0.27, and the index of agreement (d1) was 0.80. For the winter episodes, 

values ofR2, S, and d1 were 0.886, 0.3, and 0.83 respectively. 

Wotawa et al. (1998) developed a Lagrangian photochemical box model for 

providing ozone forecasts for Vienna, Austria. This model consisted of up to 8 vertical 

and up to 5 horizontal boxes. It simulated emis.sion, chemical reactions, horizontal 

diffusion, vertical diffusion, dry deposition, wet deposition and synoptic scale vertical 

exchange. Model input data included a trajectory term, which was calculated using 

forecast meteorological data. The model prediGtions for the 1995 0 3 season 

underestimated 0 3 concentrations on most days. The overall median bias was -12.3 ppb. 

The correlation coefficient (R) was greater than 0.6 for most of the study cases. 
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3.1.4 Fuzzy system models 

Fuzzy modeling is a tool aimed at using the information observed from a complex 

phenomenon to derive a quantitative model. A fuzzy system is a nonlinear mapping 

between inputs and outputs. A fuzzification block converts the crisp inputs to fuzzy sets. 

An inference mechanism uses the fuzzy rules in the rule-base to produce fuzzy 

conclusions, and a defuzzification block converts these fuzzy conclusions into crisp 

outputs (Passino and Yurkovich, 1998). 

Ryoke et al. (2000) developed a fuzzy 0 3 forecast model to describe the 

relationships between 0 3 precursor emissions ,md daily maximum 0 3 concentrations. The 

estimated emissions of NO x, VOC, CO, and S02 were used as model inputs. 

Meteorological parameters used in this model included mixing height, cloud cover, 

temperature data, solar radiation, and atmospheric stability. This fuzzy model was used to 

represent numerous results of the European Monitoring and Evaluation Program (EMEP) 

model. In this study, the fuzzy model provided better predictions of ozone than a linear 

regression model with the same input variables. The R2 between predictions by the fuzzy 

model and the EMEP ozone model was 0.811, greater than the R2 between the linear 

regression model and the EMEP model (0.6708). 

Jorquera et al. (1998) compared the performance of fuzzy system, NN, and time 

serious forecast models in Santiago, Chile. These models were applied to predictions of 

maximum I-hr 0 3 concentrations. The input variables for these models were daily 

maximum temperature (for the day of forecast), previous-day daily maximum 

temperature, and previous-day 03 concentrations. The fuzzy system model was a Takagi-
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Sugeno fuzzy model identified with a fuzzy c-mean algorithm. Testing these models with 

the observed data from the 1994 ozone season, the errors of the fuzzy model hindcasts 

were comparable with that ofNN model and time series model. For example, the average 

RSME for four ozone monitors were 23.9 ppb, 23.5 ppb, and 23.5 ppb for the fuzzy 

model, NN model, and time series model, respl~ctively. Jorquera et al. presented the 

comparison of various ozone forecast models. However, using only three model input 

variables may not be adequate for developing an accurate 0 3 forecast model. Also these 

models may not practical for next-day forecasts because "previous-day" maximum 

parameter 0 3 concentrations probably would not be available at time of forecast. 

Heo, et al. (2004) applied a fuzzy expert system and neural network combined 

model to short-term 0 3 forecasting in Seoul, Korea. The input variables included 

meteorological data (temperature, relative humidity, wind direction, wind speed, solar 

radiation), 03, and N02 concentrations for the previous day. Also the 0 3 concentrations, 

concentrations of 0 3 precursors (S02, CO, N02), and meteorological data were collected 

from 8:00 to 14:00 and were used as input variables to forecast the maximum ozone 

concentrations at 15:00. The model was examined by making predictions for 0 3 

concentrations at seven consecutive hours in a day (8:00 to 14:00), during the 1999 ozone 

season. The NMAEs of the model hindcasts ranged from 7.4% to 20.4%. This was not 

particularly impressive considering the short horizon of the predictions. Also, this scheme 

probably would not work well for next-day forecasts. 

26 



3.1.5 Other ozone forecast models 

Generalized additive models (GAMs) represent a method of fitting a smooth, 

nonlinear functional relationship between two variables in a scatter plot of data points. 

The GAM is resulted by adapting the functional forms in a linear combination fitted by 

regression techniques. GAMs are effective when the relationship between the variables is 

expected to be a complex form, not easily fitted by standard linear or non-linear models. 

GAMs do not involve strong assumptions about the relationship that is implicit in 

standard parametric regression. Davis et a1. (1999) created a GAM ozone forecast model 

in Houston, TX. In the examined years 1988 and 1991 in Houston, the RMSE of the 

model hindcasts ranged from 13.2 to 16.3 ppb and the R2 ranged from 0.66 to 0.73 for the 

individual stations. For daily domain peak concentrations, the RMSEs were from 18.5 to 

22.0 ppb and R2 were from 0.61 to 0.68. 

The classification regression tree (CART) algorithm was utilized in a pilot program 

to forecast ozone in Baltimore, Maryland (Ryan, 1994). It demonstrated skill at 

distinguishing strong and weak ozone cases but could not accurately predict high ozone 

events. Compared to the regression analysis in a same case, the CART analysis was 

characterized by poor correlations with observations and high standard error (23 ppb). 

The Simplified Ozone Modeling System (SOMS) was used in Baltimore, Maryland 

to generate long-term ozone predictions (Vukovich et aI., 2001). SOMS is a semi­

empirical model that can estimate quantitative effects of precursor emission control on 

ozone. It is based on the concept that ozone can be represented as a function of 

essentially three variables: concentrations of NO x and VOC, and the time over whic~ the 

chemical species are exposed to sunlight to produce ozone. For the three years 
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simulations using SOMS, the model bias was 1.9 ppb, MAE was 12.5 ppb and the Rl was 

0.81. Due to the availability of concentrations NOx and VOC, this model is only 

adequate for long-term ozone forecasting. 

3.2 PM2.5 Forecast Models 

The problem of fine particulate matter (PM2.5) has caused increasing concern, after 

the U.S. EPA established annual and 24-hour NAAQS for PM2.5 in 1997. The PM2.5 . 

forecast models described in literature are much less abundant than the 0 3 forecast ! 

models. Nevertheless, they do include regression models, NN models, and Photochefical 

transport models. PM2.5 Concentrations, like those of 0 3, are related to meteorologi4l 

conditions. However, PM2.5 has a much longer atmospheric life time than 0 3, so rec nt 

meteorology has less correlation with PM2.5. This makes the statistical approach, usi g 

meteorological and air quality data, tend to be somewhat less accurate for PM2.5 as 

compared to 0 3 modelling. 

Ordieres, et al. (2005) proposed a linear regression model comparison with t eir 

NN models used for predicting daily average PM2.5 concentration on the US-Mexico 

border in Texas and Chihuahua (Mexico). This simple regression model used 7 inpu 

variables, including average temperature, relative humidity, wind speed, wind beari g, 

wind direction during the first 8 hour of the day, and the average and maximum leve s of 

PM2.5 during the first 8 hours of the day. On the 2002 test data set, the R2 of the mo el 

hindcasts was 0.40. 

The NN PM2.5 forecast models developed by Ordieres, et al. (2005) include 

three types of neural network models, which were multilayer perceptron (MLP), squ re 
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multilayer perceptron (SMLP), and radial basis function (RBF) NN models. These 

models used the same input variables as the simple regression model. On the 2002 te t 

data set, the neural network models had better performance than the linear regressio 

model. The RBF network model, which had the best performance among the three n ural 

network models, had 0.46 for R2. 

Perez, et al. (2000) constructed aNN PM2.5 forecast model to make predictio s of 

hourly average PM2.5 concentrations in the downtown area of Santiago, Chile. Three 

forecast models, neural networks, linear regression, and persistence model, were 

developed to predict PM2.5 concentrations at any hour of the day, using the 24 hourl 

average concentrations measured on the previous day as the input variables. The 

of the predictions for the 1994-1995 ozone season (May 1 to September 30) ranged 

30% to 60%. In this study, the authors demonstrated that the PM2.5 formation strongl 

depends on weather conditions. The PM2.5 concentrations negatively correlated with wind 

velocity and relative humidity. 

Forsyth county environmental affairs department in Winston-Salem, North 

Carolina, has been running a "phenomenological" model to forecast year-round PM2 5 

concentrations for the Triad area of North Carolina (FCEAD, 2005). The input varia les 

for this model include a group of meteorological factors, such as wind speed, wind 

direction, cloud cover, night length, etc. This model has been used for providing PM .5 

forecasts since 1998. The model accuracy was evaluated using the value of air qualit 

index (AQI). For the model forecasts during 2005, the MAE was 10.6 AQI, the bias as-

0.8 AQI. The correlation value (R) between forecasts and observations was 0.70. Th DR 

and FAR of the model forecasts in 2005 were 0.56 and 0.55 respectively. 
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CHAPTER IV 

METHODOLOGY 

4.1 Air Quality data 

4.1.1 Ground Level Ozone Air quality data 

The air quality data was quality assured data from the US EPA AQS system, 

provided by several local agencies, such as the Louisville Air Pollution Control Dist ict 

and the Kentucky Division of Air Quality (KDAQ). The data files consisted of hour! 

readings for the 8-hr average ozone concentrations from each of the monitors in thos 

metro areas. For each of the metro areas, there are several ozone monitors located w*hin 
i 

the area. For example, the ozone data used for the Louisville ozone forecast model ctme 

from seven ozone monitors, three of which are located in Jefferson County. The oth+ 
I 

four monitors are situated in the counties that are part of the Louisville MSA, viz. Billitt 

Co. and Oldham Co. in Kentucky and Floyd Co. and Clark Co. in Indiana. There were at 
i 

least three monitors in each metro area (Table 4.1). 
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Table 4.1 Ozone Monitors in the Seven Metro Aareas 

Metro Areas Symbol No. of Location Location 
Monitor type Operation 

monitors County type period 
i 

Ashland ASH 3 Greenup, KY Suburban SLAMS 1981-prese~t 

Boyd, KY Suburban 

Carter, KY Rural 

Bowling Green BWG 3 Simpson, KY Rural Special purpose 1991-presert 

Edmonson, KY Rural Special purpose 1997 -prese~t 

Warren, KY Rural Non-EPA 1999-~reserht 

Covington COY 10 Boone, KY Rural SLAMS 1975-presert 

Kenton, KY Suburban SLAMS 1975-prese~t 

Campbell, KY Suburban SLAMS 1998-prese~t 
Clermont, OH Suburban SLAMS 2001-prese~t 
Butler, OH-1 Suburban SLAMS 1973-present 

Butler, OH -2 Suburban SLAMS 1982-presertlt 

Warren,OH Suburban SLAMS 2003-preserht 

Hamilton, OH -1 Rural SLAMS 1978-prese~t 

Hamilton, OH -2 Suburban NAMS, SLAMS 1969-preselht 

Hamilton, OH -3 Urban SLAMS 1999-~reselht 

Lexington LEX 4 Scott, KY Rural Special purpose 1993-2004 

Fayette, KY Rural SLAMS 1978-present 

Fayette, KY Suburban SLAMS 1979-present 

Jessamine, KY Suburban SLAMS 1991-~resent 

Louisville LOU 7 Jefferson, KY -1 Suburban SLAMS 1973-present 

Jefferson, KY -2 Suburban SLAMS 1973-present 

Jefferson, KY -3 Suburban SLAMS 1992-present 

Bullitt, KY Urban SLAMS 1992-present 

Oldham, KY Rural SLAMS 1981-present 

Floyd, IN Suburban SLAMS 1976-present 

Clark, IN Suburban SLAMS 1980-~resent 

Owensboro OWE 5 Hancock, KY Rural SLAMS 1980-present 

McClean, KY Rural Special purpose 1991-present 

Henderson, KY -1 Rural Special purpose 1992-present 

Henderson, KY -2 Suburban SLAMS 1982-2002 

Daviess, KY Suburban SLAMS 1970-~resent 

Paducah PAH 3 McCracken, KY Suburban SLAMS 1980-present 

Livingston, KY Rural SLAMS 1981-present 

Graves, KY Rural S~ecial ~ur~ose 1990-~resent 

Data source: US EPA, AirData - Re~orts and Ma~s: Monitor Locator. {Reference: EPA, 2005h) 

The forecast models are used to detennine whether to announce air quality 

warnings for local citizens. Therefore, the relevant parameter to forecast is the metro area 
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peak, or domain peak of 8-hr average 0 3 concentration for the day. All domain peak 

concentrations observed during the ozone season for five years were entered into a 

database. In cases where there were missing monitor data, the daily domain peak was 

determined from the available monitors, provided that the fraction of available monitors 

was greater than or equal to 60%. 

4.1.2 PM2.5 air quality in the seven metro areas 

The USEP A Air Quality System (AQS) provides a web link for downloading 

archived data for the six criteria pollutants, including PM2.5. The archived files for PM2.5 

data consist of the daily average PM2.5 concentration readings from each of the PM2.5 

monitors all over the US. Some monitors sample every day, and some monitors sample 

every three days. The PM2.5 air quality data for the seven metro areas in Kentucky were 

extracted from the archived files with a data processing program. The PM2.5 monitors in 

Kentucky are distributed over the state, and include urban, suburban, and rural areas. 

There is only one monitor in the Paducah metro area. The other six metro areas contain 

several PM2.5 monitors (Table 4.2). The appropriate daily PM2.5 concentration used in 

this study is the daily maximum 24-hr recorded concentration of all monitors used in each 

metro area (the "domain peak"). The AQS monitor data are quality assured data. 

However, for purposes of assembling a valid set of domain peak values, for these PM2.5 

databases, we required that at least 50% of the monitors for each area were in operation 

for each day. Otherwise, the day was excluded from the database. 
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Table 4.2 PM2.5 Monitors in the Seven Metro Areas 

Metro 
Symbol No. County Monitor 10 Type Location Areas 

Ashland ASH 4 Boyd Co, KY 21-019-0017-88101 SLAMS Suburban 

CarterCo,KY 21-043-0500-88101 SLAMS Rural 

Lawrence Co, OH 39-087-0100-88101 SLAMS Suburban 

Cabell Co, WV 54-011-0006-88101 SLAMS Suburban 

Bowling BWG 2 Edmonson Co, KY 21-061-0501-88101 Special Rural 

Green Warren Co, KY 21-227-0007-88101 SLAMS Urban 

Covington COV 9 Kenton Co, KY 21-117-0007-88101 SLAMS Suburban 

Campbell Co, KY 21-037-0003-88101 SLAMS Suburban 

Hamilton Co, OH 39-061-0006-88101 SLAMS Suburban 

Hamilton Co, OH 39-061-0040-88101 SLAMS Urban 

Hamilton Co, OH 39-061-0041-88101 SLAMS Urban 

Hamilton Co, OH 39-061-0042-88101 SLAMS Urban 

Hamilton Co, OH 39-061-0043-88101 SLAMS Suburban 

Hamilton Co, OH 39-061-7001-88101 SLAMS Suburban 

Hamilton Co, OH 39-061-8001-8810 1 SLAMS Suburban 

Lexington LEX 3 Fayette Co, KY 21-067-0012-8810 1 SLAMS Suburban 

Fayette Co, KY 21-067-0014-88101 SLAMS Urban 

Madison Co, KY 21-151-0003-88101 SLAMS Urban 

Louisville LOU 6 Jefferson Co, KY 21-111-0043-88101 Other Suburban 

Jefferson Co, KY 21-111-0044-88101 SLAMS Suburban 

Jefferson Co, KY 21-111-0048-88101 SLAMS Urban 

Jefferson Co, KY 21-111-0051-88101 Other Suburban 

Floyd Co, IN 18-043-1004-88101 SLAMS Suburban 

Clark Co, IN 18-019-0006-88101 SLAMS Urban 

Owensboro OWE 6 Henderson Co, KY 21-101-0014-88101 SLAMS Rural 

Daviess Co, KY 21-059-0014-88101 SLAMS Suburban 

Vanderburgh Co, IN 18-163-0006-88101 SLAMS Urban 

Vanderburgh Co, IN 18-163-0012-88101 SLAMS Urban 

Vanderburgh Co, IN 18-163-0016-88101 SLAMS Urban 

Spencer Co, IN 18-147-0009-88101 SLAMS Suburban 

Paducah PAH McCracken Co, KY 21-145-1004-88101 SLAMS Urban 

Data source: US EPA, AirData - Reports and Maps: Monitor Locator. (Reference: EPA, 2005h) 
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4.2 Original observed meteorological data 

The surface observed meteorological data were observations from local weather 

stations (Table 4.3). Most of these were obtained from Edited Local Climatological Data 

Reports issued by National Climatic Data Center (NCDC, 1999-2004a). Edited 

meteorological data were not available for Bowling Green, so unedited meteorological 

data downloaded from the NCDC website (NCDC, 1999-2004b) were used in this case. 

Data from the Agriculture Weather Center at the University of Kentucky were substituted 

for missing data (UKA WC, 2005a-b). 

Table 4.3 Weather Stations for the Seven Metro Areas 

Metro 
Station Name Location Latitude Longitude Elevation 

Areas 
Ashland Huntington Tri-state Airport Wayne Co, WV 38° 22' 82° 33' 824 ft 

Bowling Bowling Green Warren Warren Co, KY 36° 59' 86° 26' 528 ft 
Green Country Airport 

Covington Cincinnati Northern KY Boone Co, KY 39° 03' 84° 40' 869 ft 
Airport 

Lexington Lexington Bluegrass Airport Fayeette Co, KY 38° 02' 84° 36' 980 ft 

Louisville Louisville Standiford field Jefferson Co, KY 38° 11' 85° 44' 488 ft 

Owensboro Evansville Regional Airport Vanderburgh Co, 38° 02' 87° 32' 418 ft 
IN 

Paducah Paducah Barkley Regional McCracken Co, KY 37° 03' 88° 46' 413 ft 
Airport 

The meteorological parameters consisted of daily maximum and minimum 

temperature, hourly surface observations of sky description, precipitation, temperature, 

dew point, relative humidity, wind direction, and wind speed. The data were examined 

for errors with a data scanning program. All days were examined for: 
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• Missing data. Due to the extensive use of data averaging in this analysis, it was 

essential to identify missing data to ensure that averages were computed correctly 

with valid data. 

• Consistency between temperature, dew point and relative humidity. 

• Whether the temperature, dew point, relative humidity, and wind speed were 

within reasonable ranges. 

The anomalous data and missing data were compared to the data from Agriculture 

Weather Center at the University of Kentucky for verification or substitution. The days 

that still had incorrect data were excluded from the databases. 

Ozone and its precursors, particularly NOx, can be transported over distances of 

several hundred kilometers or more. Air mass trajectory analysis could be used to identify 

the direction and location of known source areas of ozone or its precursors. The NOAA 

Air Resources Laboratory provided a three-dimensional wind trajectory web calculator, 

using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, for 

calculating forward and backward trajectories at various levels for continental US 

locations (NOAA, 2005). We used the 36-hr air mass trajectories at 750 meters level for 

Louisville and Lexington for studying the relationship between air mass transportation 

and the peak ozone concentration (Figure 4.1). The duration of the trajectories was based 

on the characteristic transport time for ozone and ozone precursors (1-2 days). The 

trajectory height was chosen to be roughly half of the average summertime mixing height, 

so that the trajectories would be a mean representation of the transport, which varies in 

speed and direction throughout the mixed layer. Consideration was given to using 

trajectories at multiple heights, such as 500 m, 750m, and 1500m (Figure 4.1), but 
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rejected in favor ofthe simpler approach, in consideration ofthe time element involved in 

the ozone forecasting process (Cobourn and Hubbard, 1999). 
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Figure 4.1 48-hr backward hindcast trajectories for Lexington 

4.3 Model Performance Metrics 

Several statistical indices were used to evaluate the performance of the 0 3 and PM2.5 

forecasting models, including square of correlation coefficient (R2), statistical 

significance test value (t-value), mean error (Bias), mean absolute error (MAE), 

normalized mean absolute error (NMAE), root mean square error (RMSE), detection rate 

(DR), false alarm rate (FAR), success rate (SR), and critical success index (CSI). 
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4.3.1 Square of Correlation Coefficient (R2) 

Pearson's Correlation Coefficient (R), sometimes called Product Moment 

Correlation, reflects the degree of linear relationship between two variables (such as 

observed pollutant concentrations and model predictions). This index varies from 0 to 1, 

with 0 indicating no relationship and 1.0 indicating perfect relationship. The Square of 

Pearson's Correlation Coefficient (R2) represents the percent of the variance in the 

dependent variable (observed concentrations) explained by the independent variable 

(model predictions). The R2 is defined by (Lomax, 2001), 

(4.1) 

where Pi refers to the model predictions for 0 3 or PM2.5 concentration and 0i 

represents the observed values, and 0i is the average of the observed pollutant 

concentrations. 

4.3.2 Statistical significance test value (t-value) 

Statistical significance brings into focus the possible uncertainty in the regression 

results due to sample size. The test statistic t-value reflects the statistical significance of 

each regression coefficient for multiple linear regressions. The t-value is formed by the 

ratio of a parameter coefficient divided by its respective estimated standard error, formed 

as 

(4.2) 
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where bk is the estimated parameter coefficient, s(bk ) is the standard error of bk , defined 

as 

(4.3) 

where n is the sample size, s~ is the sample variance for the kth estimated parameter, 

R: is the squared multiple correlation between the kth estimated parameter and the 

remaining estimated parameters, and s res is the variance of the errors of estimation. 

The t-value is compared to the critical values oft at the designated level of 

significance (the probability of the t-value outside the critical value) with degrees of 

freedom. If the t-value of a regression coefficient is greater than the critical value, we can 

infer that the regression parameter is statistically significant and there is correlation 

between the corresponding independent variables and the dependent variable. For the 

multiple linear regressions in this study, at the 0.05 level of significance with ~ 750 

degrees of freedom, the critical t-value is about 2.0 (Lomax, 2001). 

4.3.3 Mean error (Bias) 

The mean error (Bias) is the arithmetic mean of the errors, given by 

Bias = ....:...i~....:...1 __ _ (4.4) 
n 

The Bias for the fitted data in a regression model should be zero. The Bias for forecasted 

data using a regression model usually is close to zero. 
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4.3.4 Mean absolute error (MAE) 

The mean absolute error (MAE) is the average absolute value of the prediction errors. 

The MAE is given by 

n 

Ilpi-Oi I 
MAE = ....:...i=....:...l __ _ (4.5) 

n 

4.3.5 Normalized mean absolute error (NMAE) 

The average 0 3 and PM2.5 concentrations vary from one location to another. 

Using the same forecast models, the model predictions for the areas with high pollutant 

concentration levels usually have higher MAEs than the model predictions for the areas 

with low concentration levels. Therefore, the MAE is not useful for comparing model 

results from different locations. In this case, the normalized mean absolute error (NMAE) 

may better evaluate the forecast models for different areas. The NMAE is the ratio of 

MAE to average pollutant concentrations. Expressed as a percentage, it is given by 

NMAE = M!E xl 00% 
OJ 

4.3.6 Root mean square error (RMSE) 

(4.6) 

The root mean square error (RMSE) is the square root of the mean of the squares of 

all the forecast errors, given by 

(4.7) 

Compared to the MAE, the RMSE is more sensitive to outliers. 
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4.3.7 Detection rate (DR) 

The detection rate (DR) is the fraction of the observed exceedences detected by the 

model. It is calculated by 

DR=DE 
EX 

(4.8) 

where DE is the number of detected exceedences, and EX is the number of total observed 

exceedences during a specified period (e.g. ozone season). The model "detects" an 

exceedence based on the model prediction exceeding pre-determined alarm threshold. 

The alarm threshold may be set at the air quality exceedence level, or slightly below, to 

provide a margin of safety. The DR generally decreases with increasing alarm threshold 

(Hubbard, 1997). The recommended alarm thresholds for the 0 3 and PM2.5 forecast 

models are slightly lower (~5 ppb) than the nominal NAAQS exceedence threshold, so 

that accurate forecasts (e.g. within a few ppb) just below the exceedence level do not 

result in "missed exceedences". 

4.3.8 False alarm rate (FAR) 

A false alarm is an alarm for which the observed concentration did not exceed the 

alarm threshold. The false alarm rate is defined as the ratio of false alarms (FA) to total 

alarms (AL) predicted by the model. 

FAR = FA 
AL 

(4.9) 

Increasing the alarm threshold tends to reduce both the alarms and false alarms, but 

the false alarm rate tends to increase. Lowering the alarm threshold would tend to 

improve the DR and FAR, but increase the number of alarms and false alarms. In 
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prescribing an alarm threshold, public officials must strike a balance between achieving a 

high DR, without creating too many alarms and false alarms that could erode public 

confidence in the air quality forecasts. 

4.3.9 Critical successes index (CSI) 

The critical successes index is the ratio of valid alarms ( AL - FA) to critical events. 

Critical events include alarms and undetected exceedences. The CSI can be calculated by 

CSI = AL-FA 
AL+EX-DE 

(4.10) 

The CSI is a measure of the model effectivities at critical forecasts, i.e., when the 

predictions are above alarm levels or concentrations are above exceedence levels. 

4.3.10 Success rate (SR) 

The success rate is the ratio of the successful predictions (i.e., both the observed 

exceedences and non-exceedences that were successfully predicted by the model) to 

overall observed days (OD). The successful predictions can be obtained by subtracting 

the false alarms and undetected exceedences from the overall observed days. The SR is 

given by 

SR = _O_'D_-_F_'A_---'...(_EX_-_D_E-'-J 
OD 

(4.11 ) 

Since most days during the ozone season are uneventful, the SR is usually a high 

percentage. 
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CHAPTER V 

OZONE FORECAST MODELS 

In 1997, the first hybrid nonlinear regression (NLR) ozone forecast model for 

Louisville was developed at University of Louisville. Due to the successful 

implementation of the NLR model for Louisville, more NLR ozone forecast models were 

developed for other selected metro areas in Kentucky. In 2005 there were seven NLR 

models providing ozone predictions for the metro areas Ashland, Owensboro, Bowling 

Green, Covington, Lexington, Louisville, and Paducah. Since the local ozone pollution is 

affected in part by the local and regional emissions, climate, and land use, a separate 

fitting process was employed for each metro-area model. Each of the metro area 

databases consisted of ozone air quality data and meteorological data from consecutive 

ozone seasons. The databases were updated each year by adding the air quality and 

meteorological data from the most recent ozone season, and removing the data of the 

earliest ozone season. 

Development of the NLR models has led to the compiling of several sets of 

complete databases of ozone concentrations and related meteorological parameters for the 

seven metro areas. Using 1999-2003 database set, fuzzy system ozone forecast models 

were developed for the seven metro areas for application to the 2004 forecast season. 

Moreover, combined NLR-fuzzy models were synthesized with the objective of attaining 

a set of more accurate ozone forecast models. 
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5.1 Ozone Prediction Parameter Development 

The training data used for developing the ozone forecast models for the seven 

metropolitan areas consisted of ozone air quality data and a group of candidate ozone 

predictors. The ozone predictors were derived from observed meteorological data and 

other factors that play important roles in ozone concentrations, such as pollutant transport 

and ozone air quality trend. The database for each of the metro areas was built to manage 

the data and generate the parameters used in the ozone forecast models. Each database 

contained data from five ozone seasons (May to September). The maximum number of 

days in each database was thus 765 days. Due to some missing ozone data or 

meteorological data, the total number of days in the databases ranged from 750 to 760. 

Ozone prediction parameters were derived from meteorological data, air mass trajectories, 

and other deterministic factors. There were four classes of parameters used in this study, 

including observed meteorological parameters, derived meteorological parameters, 

deterministic parameters, and other parameters. 

5.1.1 Observed meteorological parameters 

The observed meteorological parameters consisted of daily maximum and 

minimum temperature (Tmax, Tmin), average temperature (Tavg), dew point temperature 

(Dewpt), cloud cover (CC), relative humidity (RR), mid-day wind speed (WS), rain 

(Rain), and thunder storm occurrences (TS). The parameters Tmax and Tmin were 

instantaneous values of extrema from the datasets, not extremes of the hourly data. To 

reduce the random fluctuations of the hourly observed data, the parameter Tavg, Dewpt, 
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CC, RH, and WS were averaged over several hours. The span of averaging interval was 

chosen to be 10 A.M. to 4 P.M. During that time of day the ozone levels were highest. 

Daily maximum temperature is the most powerful meteorological variable for 

forecasting ground-level ozone. This is because the rates of photochemical reactions are 

highly sensitive to temperature, and high air temperatures are usually associated with 

strong solar radiation, sunny skies, stagnant circulation, and subsiding upper air. The 

scatter plot of 0 3 against the parameter Tmax was used for studying the response of 0 3 

on Tmax (For example, Figure 5.1). It was found that a second-order polynomial 

provides a good fit to the data. The values of coefficient of determination (R2) for the 

regressions were about 0.4 (Lin, 2004). In a two-way linear regression, the parameter 

Dewpt correlated positively to ground-level 0 3. The dew point provides a lower limit 

value on the minimum temperature due to the latent heat of condensation of water. So the 

parameters Dewpt and Tmin strong correlated to each other in the multiple linear 

regression. In this study, the parameters Tmin and Tavg were not used as direct ozone 

predictors. The Tavg and Dewpt were used to estimate the relative humidity; the Tavg 

and Tmin were used to calculate "special relative humidity" (RHx) parameter. 
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Figure 5.1 Second-order polynomial regression of 0 3 concentrations vs. Tmax (Data 
from Ashland 1998-2002 ozone season) 

Cloud cover is negatively correlated with ground-level ozone concentrations since 

clouds reduce solar radiation intensity available to drive the ozone forming 

photochemical reactions. Sky condition was reported using encoded descriptions such as 

"Clear", "Overcast", etc. In order to develop the parameter CC for numerical analysis, it 

was necessary to convert the encoded descriptions to the equivalent tenths of cloud cover 

(Table 5.1). 
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Table 5.1 Tenth of Cloud Cover Converted by Sky Condition Descriptions 

Sky Condition CC value 
Description Symbol (tenth) 

Clear CLR 0.5 

Few cloud FEW 1.5 

Scatter SCT 3 

Broken BKN 7 

Overcast OVC 9.5 

Surface wind speed affects the dilution and mixing of air pollutants. High wind 

speed reduces pollutant concentrations. Some air pollutant concentration models 

theoretically explained this phenomenon. For example, in both the Gaussian plume 

diffusion model 

and the fixed-box model (De Nevers, 1995) 

C=b+!l..:i 
U·h 

(5.1) 

(5.2) 

local pollutant concentration, C, is inversely proportional to wind speed, U. Ozone 

concentration is negatively correlated with wind speed (Figure 5.2). With databases of 

Ashland, Bowling Green, Owensboro, and Paducah, a variety of functional forms were 

fitted to the wind speed data. The best model was found to be a nonlinear exponential 

function 

[03 ] = fJ exp(O· Mdwind) (5.3) 

where Mdwind refers to mid-day wind speed, p and e are coefficients. On average, the 

determination coefficients R2 for the above function in a two-way regression was about 

0.03 (Lin, 2004). This form was used as part of the nonlinear term in the model. 
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Figure 5.2 Nonlinear regression of 0 3 concentrations vs. surface wind speed (Data from 
Bowling Green) 

The precipitation parameter "Rain" used in this study referred to the daily 

precipitation recorded in the NCDC data files. The rainfall reduces ozone levels by 

directly scavenging 0 3 and 03 precursors. On the other hand, rainfall is associated with 

increased cloud cover and increased convective activity. All these factors would reduce 

ozone levels. Thunderstorm occurrences were selected as a parameter based on two 

reasons: first, thunderstorms are usually accompanied with heavy rain and unstable 

atmospheric conditions; second, a forecasted thunderstorm probability can be obtained 24 

hours in advance. The parameter TS was defined as following: If the thunderstorm 

occurred in time period 6 A.M. to 5 P .M, the parameter was assigned value" 1 ", 

otherwise it was assigned value "0". 
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5.1.2 Derived meteorological parameters 

Derived meteorological parameters consisted of maximum and minimum 

temperature departure (Tmx_dep and Tmn_dep), and special relative humidity (Rhx). 

The National Climatic Data Center provided the "normal" climatological conditions for 

metro areas all over the nation. The normal daily maximum and minimum temperatures 

are the 30-year average values computed from the data recorded during the period 1971-

2000 (NCDC, 2003). The parameter Tmx _ dep and Tmn _ dep were obtained by 

calculating the differences between the daily maximum or minimum temperatures and the 

corresponding normal values. In our previous nonlinear regression ozone forecast models, 

either Tmx _ dep or Tmn _ dep were significantly correlated with ozone concentrations (Lin, 

2004). 

The relative humidity is calculated from the partial pressure of water (function of 

dew point temperature) and the saturated vapor pressure of water at the temperature 

(function of temperature). The calculated relative humidity correlated better than the 

National Weather Service measured relative humidity. 

RH = Psat( Dewpt ) 
Psat(Tavg) 

In this study, we define a "special relative humidity" parameter, as follow, 

RHx = Psat(T min) 
Psat(Tmax) 

(5.4) 

(5.5) 

where Psat( ) is a polynomial function used for calculating the saturation vapor pressure 

of water. In the previous ozone forecast models, the parameter RHx was used in the 

nonlinear term because of higher statistical significance in the nonlinear regression. The 

48 



parameter RH sometimes was used as a linear term if it was statistically significant in the 

multiple linear regression. 

5.1.3 Deterministic parameters 

The deterministic parameters consisted of normal maximum temperature 

(Tmx_nrm), normal minimum temperature (Tmn_nrm), length of day (LOD), clear sky 

atmospheric transmittance (Xmitt), holiday (HoI), Saturday (Sat), and Friday (Fri). 

The clear sky atmospheric transmittance was derived from the average intensity 

of solar radiation at noon received at ground level, which drives the photochemical ozone 

formation process. The parameters Xmitt and LOD both are calculated with day of year, 

zenith angle, and altitude angle of the metro areas location. Since the LOD and Xmitt 

strongly correlate with each other, the one that performed better in the regressions was 

selected as the independent parameter in the forecast model. 

Saturday, Friday, and holiday were considered as parameters because on the 

weekend or holiday, the reduction of traffic and manufacturing could reduce the emission 

of ozone's precursors, VOC and NOx. Each of the three parameters, Sat, Fri, and HoI, 

has been statistically significant in some previous forecast modes. 

5.1.4 Other ozone prediction parameters 

This category includes the statistical parameter local ozone trend (Trend) and two 

transport parameters, air mass trajectory (Traj) and 48-hr ozone transport (OZ48). 

The parameter Trend was developed based on the fact that the regional average 

ozone concentrations have declined over the past five years. Coboum and Lin (2004) 
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studied the ozone trend for six Kentucky metro areas. On average, the meteorologically 

adjusted ozone concentrations declined about 6 ppb during the five recent 0 3 seasons 

1998-2002. Emissions of NO x and VOC compounds also declined during this period 

(EPA 2005). 

The trajectory parameter "Traj" reflects the influence of the transport of ozone 

and its precursors. To determine the value of this parameter, the forecaster would 

compare the 750m air trajectory to a map that displays an envelope developed by 

Cobourn and Hubbard (1999) encompassing most of the large NOx emission sources 

(Figure 5.3). The parameter would be assigned as a value of 1.0 if the originating 

backward trajectory was fully inside the envelope, a value of zero if originating outside 

the envelope, and a value of 0.5 if originating inside the envelope, but lying in proximity 

to the envelope boundary. 

Backward Trajectory Origins [1993 -1997] 
- 0 3 (1 h) ~ 11Sppb 0 0 3 (1 h) < 100ppb ["35" days] 

\-

o \ -\ 
\ 
('( ,­, 

"'-
0' o o~ _ 
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o 

Figure 5.3 Origins of the 36-hr backward trajectories at 750m elevation on high-ozone 
days during the Period 1993-1997 (Louisville pattern. Cobourn, 1999) 
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The parameter OZ48 accounts for the influence of the long distance transported 

ozone on the local ozone concentrations. The value of parameter OZ48 was determined 

by comparing the figures of the 48-hour backward air trajectory to the national ozone 

concentration contour map available from the EPA AIRNOW web site (Figure 5.4). If the 

48-hour backward trajectory came from the areas with high ozone concentrations, the 

parameter OZ48 was assigned as a value of 1.0. Otherwise it was assigned as a value of 

zero. 

Figure 5.4 Sample AIRNOW Map (I-hr ozone concentrations) (EPA, 2005 j) 

The four classes of ozone prediction parameters are summarized in Table 5.2. 

These candidate predictor variables were included in databases for possible use in the 

ozone forecast models. 

51 



Table 5.2 Candidate Variables for Ozone Forecast Models 

Class Parameter Description Units Timing 

Tmax maximum temperature of Daily instantaneous 

Tmin minimum temperature of Daily instantaneous 

Tavg average temperature of 10 am to 4 pm avg. 

Observed Dewpt dew point temperature of 10 am to 4 pm avg. 
Meteorological 
Parameter CC cloud cover 10 am to 4 pm avg. 

WS wind speed mph 10 am to 4 pm avg. 

Rain rain inch daily 

TS thunder storm 5 am to 5 pm 

Tmx_dep max. temperature departure of daily 

Derived Tmn_dep min. temperature departure of daily 
Meteorological 
Parameter RH special relative humidity 2 10 am to 4 pm avg. 

RHx special relative humidity 4 10 am to 4 pm avg. 

Tmx_nrm normal max. temperature OF daily 

Tmn_nrm normal min. temperature of daily 

LOD length of day hours daily 

Xmitt atmospheric transmittance noon 

Deterministic Trend ozone trend ppb/year annual 

Parameter 
Traj air mass trajectory 36-hr backward 

OZ48 ozone transportation 48-hr backward 

Hoi holiday 

Sat Saturday 

Fri Friday 
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5.2 Evaluation of 2005 NLR ozone forecast models 

The NLR model has been shown to be more accurate than linear models and at 

least as accurate as neural network models for 0 3 forecasting (Coboum et aI, 2000). It 

also has been shown that the previous NLR forecast models for six metro areas in 

Kentucky (Ashland, Owensboro, Bowling Green, Lexington, Louisville, and Paducah) 

performed well on providing 0 3 forecasts for those metro areas (Coboum and Hubbard, 

1999; Lin, 2005). In the year of2003, one more NLR ozone forecast model for the 

Cincinnatti-Covington metro statistical area (MSA) was developed and implemented. The 

2005 ozone forecast models for the seven metro areas refer to the models fitted to the 

databases of 2000-2004 ozone seasons. These models were designed to predict the daily 

maximum ozone concentrations in the summer ozone season of2005. In this study, the 

2005 ozone forecast models for all the seven metro areas will be evaluated on both 

calibration data sets and independent data sets. 

5.2.1 The NLR ozone forecast models for seven metro areas 

The operational 0 3 forecast models were hybrid models. A standard model and a 

"Hi-Lo" model were developed separately for each metro area model. The standard 

model was fitted to the complete database, so as to predict ozone levels with equal 

probability of success on all days. The Hi-Lo model was developed to improve the 

detection rate on days conducive to high ozone. This was done by fitting the Hi-Lo model 

to the days on which the ozone concentrations were in the upper and lower 10% ofthe 

ozone distribution. This technique reduced the influence of the middle days on the 

outcome of the regression coefficients. Both the high and low ozone concentration days 
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were included in the Hi-Lo model to preserve the numerical range of the predictors and 

predictand. The Hi-Lo model was invoked when high ozone-prone meteorological 

conditions, called 3S criteria, were forecast. The 3S criteria account for three important 

weather characteristics associated with high ozone level: sunny, sultry, and stagnant, as 

follows: 

• Maximum temperature greater than 87 of; 

• Wind speed less than 6.0 mph; 

• Cloud cover less than 2.5 tenths. 

This switching strategy increased the detection rate and increased the explained variance, 

without significantly changing the bias or MAE error for the model (Coboum and 

Hubbard, 1999). 

The nonlinear regression model was characterized by a nonlinear term (Nonlin). 

The nonlinear term was actually a separate prediction model, obtained in a nonlinear 

regression fitting process. The nonlinear term had the same form in each of the seven 

NLR forecast models, as follows: 

(5.6) 

This function accounted for the nonlinear behavior of ozone with regard to maximum 

temperature, wind speed, and relative humidity. As explained the special relative 

humidity term Rhx was used in the nonlinear term because the statistical significance in 

the nonlinear regression was slightly better than that of the relative humidity, RH. A 

separate regression process was employed for each metro-area model, yielding a unique 

set of constants a j for each metro area (Table 5.3). 
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Table 5.3 Coefficients for the Nonlinear Tenn for the 2005 NLR Ozone Models 

Coef. ASH BWG CVG LEX LOU OWE PAH 

Standard model 

a1 86.87 88.47 85.91 80.18 90.97 90.03 80.33 

a2 -3.04 -2.02 -3.47 -1.53 -3.63 -2.97 -1.95 

a3 0.041 0.028 0.049 0.024 0.049 0.039 0.027 

a4 -0.112 -0.052 -0.076 -0.041 -0.076 -0.079 -0.049 

as -0.010 -0.012 -0.010 -0.012 -0.011 -0.011 -0.010 

Hi-Lo model 

a1 70.28 88.47 -2.41 -238.87 60.34 47.92 80.33 

a2 -2.95 -2.02 -0.14 6.77 -2.92 -1.39 -1.95 

a3 0.046 0.028 0.027 -0.023 0.051 0.032 0.027 

a4 -0.057 -0.052 -0.021 -0.003 -0.050 -0.015 -0.049 

as -0.013 -0.012 -0.013 -0.019 -0.014 -0.017 -0.010 

The nonlinear tenn was used as a predictor variable in the multiple linear 

regression. The final equation for the forecast model, with predicted 0 3 as the dependent 

variable, consisted of an intercept and a group of explanatory tenns. The general fonn of 

the final equation used for the seven NLR models is, 

Whether a parameter was used as an independent variable depended on statistical 

significance in the multiple linear regression. As described in Chapter II, Section D, if the 

t-value of a parameter was greater than 2.0 in the regression process, the parameter was 

used as an independent variable. The final models for each of the metro areas were each 

slightly different from the general fonn equation. All the models included the tenn 

Nonlin, Xmitt, and Trend. None of the models included all predictor variables and no two 

models had a common predictor variable set. The model coefficients were unique to each 
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area, but the values of the parameter were of the same order of magnitude for both the 

standard and Hi-Lo models (Table 5.4 and Table 5.5). 

Table 5.4 Model Coefficients for 2005 NLR Ozone Forecast Models 
(Standard Regression) 

Variable Coet. ASH BWG CVG LEX LOU OWE PAH 

Intercep -182.90 -173.64 -237.61 -152.32 -200.50 -233.62 -220.32 

Nonlin b1 0.76 0.71 0.88 0.58 0.75 0.77 0.94 

Xmitt b2 333.68 333.55 396.96 300.35 362.56 409.88 385.16 

Trend b3 -1.78 -0.72 -0.38 -0.90 -1.50 -1.04 -1.34 

RHx b4 -0.15 -0.33 -0.16 -0.25 -0.29 -0.20 

Tmn_dep b5 0.17 0.11 0.12 0.09 0.12 0.18 

WS b6 -0.52 -0.56 -0.30 -0.29 -0.27 

CC b7 -0.58 -0.45 -0.59 -0.84 

Dewpt b8 -0.28 

Traj b9 2.05 3.68 

OZ48 b10 8.03 8.43 

TS b11 -2.60 

Table 5.5 Model Coefficients for the Seven NLR Ozone Forecast Models. 
(Hi-Lo Regression) 

Variable Coet. ASH BWG CVG LEX LOU OWE PAH 

Intercep -198.16 -249.07 -319.28 -231.60 -221.12 -255.81 -246.99 

Nonlin b1 0.62 0.84 0.97 0.66 0.69 0.92 1.05 

Xmitt b2 387.10 458.19 528.79 425.87 405.13 447.51 425.05 

Trend b3 -2.94 -0.92 -1.40 -2.13 -1.98 -2.48 

RHx b4 -0.21 -0.50 -0.26 -0.37 -0.31 -0.41 

Tmn_dep b5 

WS b6 -0.60 -0.55 

CC b7 -1.36 -1.33 

Dewpt b8 -0.34 

Traj b9 5.55 

OZ48 b10 8.58 10.17 

TS b11 

56 



The parameters Traj and OZ48 were used for the Louisville and Lexington forecast 

models. Application of Traj and OZ48 resulted in an improvement in the model accuracy 

(Cobourn and Hubbard, 1999). However, when the model is used for operational 

forecasts, the values of the Traj and OZ48 need to be determined manually by an air 

quality professional. Louisville and Lexington have had professional ozone forecasters 

during recent ozone seasons. The other communities did not. Therefore, the two transport 

parameters were not used in the models applied to the automated internet ozone forecasts. 

5.2.2 Evaluating models with calibration data set 

Model performance on the calibration data set was evaluated by comparing the 

model estimates with the observed ozone concentrations. For the seven 2005 ozone 

forecast models, the R2 for the model fits ranged from 0.72 (for Ashland) to 0.80 (for 

Covington). That indicates that the ozone forecast models can explain at least 72% of the 

local ozone variance. The bias for each hybrid model was near zero. This was expected, 

since the standard and Hi-Lo basic models each had zero bias for the model fits. The 

MAE and RMSE were used to evaluate the deviation of the predicted values from the 

observed values. The MAE for the seven forecast models ranged from 5.57 ppb (for 

Lexington) to 7.32 ppb (for Ashland). The NMAE varied little by location, and was 

typically 11~12% (Table 5.6). 
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Table 5.6 Statistics of the Model Perfonnance on Calibration Data Sets 

Statistic ASH BWG CVG LEX LOU OWE PAH 

Bias (ppb) 0.33 0.61 0.39 0.05 0.12 0.12 0.13 

MAE (ppb) 7.32 6.55 6.76 5.57 6.32 6.60 6.78 

RMSE (ppb) 9.11 8.39 8.61 7.08 8.19 8.25 8.45 

NMAE 12.8% 11.7% 11.3% 10.7% 10.7% 11.8% 12.1% 

(03)av9 57.1 55.9 60.0 51.8 59.1 56.0 56.0 

R2 0.72 0.79 0.80 0.75 0.79 0.72 0.72 

Count 750 742 757 762 763 748 759 

The forecast skill of an ozone forecast model was evaluated with the indexes DR, 

FAR, CSI, and SR. These detection indexes indicate the effectiveness of a model in 

predicting high ozone concentrations. The values of the DR, FAR, and CSI were affected 

by the alann threshold. The unhealthy limit ofNAAQS is 85 ppb for 8-hr ground-level 

ozone. However, an alann threshold slightly lower than the NAAQS unhealthy limit 

could significantly increase the detection rate without issuing too many false alanns. In 

this study, the alann threshold was chosen as 80 ppb. For the seven areas, the Louisville 

and Lexington models had relatively high DR and low FAR, due to the use of transport 

parameters Traj and OZ48; the Bowling Green model had the lowest DR of 0.38 and the 

highest FAR of 0.54, probably because the unedited meteorological data were used to 

build the database (Table 5.7). These statistics compare favorably with those of the 

previous NLR ozone forecast models. 
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Table 5.7 Detection Statistics for the 2005 Ozone Forecast Models 
(1999-2004 calibration data, Threshold 80 ppb) 

Statistic Sym ASH BWG CVG LEX LOU OWE PAH 

Detection Rate DR 0.55 0.38 0.60 0.56 0.71 0.40 0.57 

False Alarm Rate FAR 0.28 0.54 0.23 0.17 0.15 0.31 0.38 

Critical Success Index CSI 0.50 0.33 0.54 0.63 0.66 0.35 0.43 

Success Rate SR 0.96 0.97 0.94 0.99 0.97 0.97 0.98 

Events EV 58 36 93 16 70 31 30 

Detected Exceedences EX 22 6 42 5 39 10 12 

Exceedences DE 40 16 70 9 55 25 21 

Alarms AL 40 26 65 12 54 16 21 

False Alarms FA 11 14 15 2 8 5 8 

The scatter plot of the model fits versus the observed ozone concentrations 

illustrates the correspondence between model estimates and observations. Figure 5.5 is a 

sample scatter plot for the Ashland forecast model. The relatively dense scatter of points 

near to the diagonal line indicates the good correlation and agreement between 

predictions and observations. Scatter plots for the other metro areas had a similar pattern. 

The residual is defined as the difference between the observed and predicted 

values. The scatter plot of residuals of the model estimates versus observed ozone 

concentrations shows that errors were mostly unbiased over the range of 0 3 concentration. 

The residuals plot for the seven ozone forecast models each had a pattern similar to the 

example plot for the Ashland forecast model (Figure 5.6). 
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Figure 5.5 Scatter plot of model estimates against observed 0 3 (Ashland, 2000-2004). 
The diagonal indicates the perfect correspondence line. 
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Figure 5.6 Residuals of the hybrid model versus the predicted ozone concentrations. 
(Ashland,2000-2004) 
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5.2.3 Model perfonnance in predicting 0 3 concentrations of2005 ozone season 

To test the final NLR-fuzzy and basic-fuzzy models on an independent data set, 

the models were used to hindcast the peak ozone concentrations during the 2005 ozone 

season. The Bias of the model hindcasts ranged from -3.1 ppb (Louisville) to 2.8 ppb 

(Bowling Green). The MAE of the model hindcast ranged from 5.40 ppb (Lexington) to 

7.20 ppb (for Bowling Green), on average for the seven areas, 6.27 ppb. The MAE was 

9.8% - 12.7% of the corresponding average observed 0 3 for each of the seven metro 

areas (Table 5.8). 

Table 5.8 Statistics ofthe NLR Ozone Model Hindcasts for 2005 

Statistic ASH BWG CVG LEX LOU OWE PAH 

Bias (ppb) 1.60 2.80 1.30 0.10 -3.10 -1.30 -0.60 

MAE (ppb) 5.90 7.20 6.50 5.40 6.70 6.00 6.20 

NMAE 10.3% 12.7% 10.3% 9.8% 10.8% 10.3% 11.0% 

[031.vg 57.3 56.9 63.2 55.0 61.8 58.3 56.6 

detected exceedence 2 0 12 0 5 0 0 

exceedence 3 18 0 8 2 

false alarms 0 5 5 4 2 0 0 

alarms 5 6 25 11 11 0 0 

For most of the metro areas, there were typically just a few NAAQS exceedences 

during 2005 (Table 5.8). Thus, the annual critical forecast statistics for most metro areas 

were not statistically meaningful. Taken together, though, the combined statistics for all 

metro areas during 2005 ozone seasons (33 total exceedence days) provide an indication 

of the critical forecast perfonnance. For all Kentucky metro areas during the study 

period, the DR was 0.58 and the FAR was 0.26. This critical forecast perfonnance was 
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reasonably good and compares favorably with other reported operational 0 3 forecast 

models. 

The model hindcasts tracked the day-to-day ozone variation reasonably well, as 

the time series plot for Louisville shows (Figure 5.7). 

120,-------------------------------, 

20 

MSA Ozone 8h Summer 2005 -- hindeast --Observed 
.. <>. hindeast 

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 

Days 

Figure 5.7 Time series of observed 8-hr ozone in Louisville and hindcasts for the NLR 
model during the 2005 ozone season. 

During the 2005 ozone forecast season, the meteorological forecast data used for 

the NLR model forecasts were saved. This data consisted of text files of the model output 

statistic (MOS) forecasts from the daily 1200 UTC NGM numerical weather model runs 

for each metro area. The availability of this data made it possible to evaluate the NLR 

models in the forecast mode. The Bias of the model forecasts ranged from -6.0 ppb 

(Owensboro) to 0.5 ppb (Covington). The MAE of the model forecasts ranged from 7.90 

ppb (Bowling Green) to 9.80 ppb (Owensboro), on average, 8.61 ppb. The MAE was 

12.8% - 16.8% of the corresponding average observed 0 3, which was greater than those 
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of the model hindcasts for each of the areas (Table 5.9). For the combined statistics for 

all metro areas during 2005 ozone seasons, the DR was 0.64 and the FAR was 0.57. 

Table 5.9 Statistics of the NLR Ozone Model Forecasts for 2005 

Statistic ASH BWG CVG LEX LOU OWE PAH 

Bias (ppb) -1.90 -0.60 0.50 -3.30 -5.10 -6.00 -5.60 

MAE (ppb) 8.40 7.90 8.10 8.30 9.10 9.80 8.70 

NMAE 15.7% 13.9% 12.8% 15.1% 15.7% 16.8% 15.4% 

[03]av9 57.3 56.9 63.2 55.0 61.8 58.3 56.6 

detected exceedence 3 0 13 0 5 0 0 

exceedence 3 18 0 8 2 

false alarms 15 6 8 2 2 0 

alarms 5 7 30 9 12 

Figure 5.8 is an example oftime series plot for the Louisville forecast model. The 

predictions are seen to agree quite closely with the observed concentrations on most days. 
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Figure 5.8 Time series of observed 8-hr ozone in Louisville and forecasts for the NLR 
model during the 2005 ozone season. 
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5.3 Development of Fuzzy System Ozone Forecast Models 

5.3.1 Theory of fuzzy systems 

5.3.1.1 Standard fuzzy system 

Fuzzy modeling is a tool aimed at using the information observed from a complex 

phenomenon to derive a quantitative model. A general fuzzy system consists of four parts: 

a rule base, an inference mechanism, a fuzzification interface, and a defuzzification 

interface. It has the following structure: 

Fuzzification Inference Mechanism Defuzzification 

x ~ Converting crisp input 1-. Mapping fuzzy input to ~ Converting fuzzy 
to fuzzy sets fuzzy output with the output sets to crisp 

-+ y 

Rule Base output 

Figure 5.9 Structure of a general fuzzy system 

The inputs and outputs consist of real numbers. The fuzzification block converts 

the crisp inputs to fuzzy sets. The inference mechanism uses the fuzzy rules in the rule-

base to produce fuzzy conclusions, and the defuzzification block converts these fuzzy 

conclusions to crisp outputs (Passino and Yurkovich, 1998). 

A fuzzy system is a static nonlinear mapping between inputs and outputs. The 

mapping of the inputs to the outputs for a fuzzy system is in part characterized by a set of 

rules in if-then form, 

If premise Then consequent (5.8) 

The inputs of the fuzzy system are associated with the premise, and the outputs 

are associated with the consequent. The standard form of a multi-input single-output 

(MISO) of a linguistic rule is 
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Rule i: (5.9) 

where X=(x\, X2, ... , xn) is the set of input variables, the number of input variables is n; y 

is the output variable. The fuzzy sets Ai = (A:, A~,· .. , A~) and Bi are input and output 

fuzzy sets, respectively. A fuzzy set is used to heuristically quantify the meaning of 

linguistic variables, values, and rules. It is a crisp set of pairings of elements coupled 

with their associated membership values defined by membership functions. Rule i above 

states that if a given input set X can associated with a known pattern, then a rule specific 

to Ai will give an estimate of the associated output y (Jorquera et aI, 1998). 

The membership function associates with fuzzy sets Ai and Bi. It maps the 

elements of the input or output variables to [0,1]. The membership function describes the 

"certainty" that an element of the variables may be classified linguistically as a specific 

linguistic value. There are many choices for the shape of the membership function, 

including singleton, triangular, trapezoidal, and Gaussian membership functions, etc. 

(Figure 5.10). These membership functions each provide a different meaning for the 

linguistic values that they quantify. The shape of membership functions is chosen by the 

fuzzy system designer. 
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Figure 5.10 Typical membership functions for fuzzy system models (Passino and 
Yurkovich, 1998) 

The fuzzification process specifies how the fuzzy system will convert its numeric 

inputs into fuzzy sets so that they can be used by the fuzzy system. Generally, the 

"singleton fuzzification" is used in implementations to produce a fuzzy set for the inputs, 

which describes the certainty of the input taking on its measured value. The singleton 

fuzzification was used as the membership function. This method simplifies computational 

complexity to the inference process and achieves comparable functional capabilities with 

other fuzzification methods (Gaussian and triangle fuzzification, etc.). 

The inference mechanism has two steps. The first step is determining the extent 

to which each rule is relevant to the current situation as characterized by the inputs. In 

this step, a membership value Ili is formed for the ith rule's premise that represents the 

certainty that each rule's premise applies to the given inputs. Second, the inference step 

determines implied fuzzy sets by combining the membership values for the premise and 

consequent. 

A number of defuzzification strategies exist. The typical defuzzification 

techniques for the implied fuzzy sets include center of gravity (COG) and center-average. 

With center-average defuzzification, a crisp output y is chosen using the centers of each 

of the output membership functions and the maximum certainty of each of the 
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conclusions represented with the implied fuzzy sets. When using singleton fuzzification 

and center-average defuzzification, a mathematical representation of a MISO fuzzy 

systems is 

R 

L)i/-li 
y =..:...i=--,:-~ __ (5.10) 

L/-li 
i=1 

where R is the number of rules, b i is the center of the output membership function, fli IS 

the premise membership value for the ith rule. 

5.3.1.2 Takagi-Sugeno fuzzy system 

When the consequence part of the rule uses a function gj instead of a linguistic 

term with an associated membership, the fuzzy system is referred to as a Takagi-Sugeno 

(T -S) fuzzy system, or "functional fuzzy system". The ith rule of a MISO functional 

fuzzy system has the form 

If X is Ai, then y = g i i = 1, ... , R (5.11) 

The premise of this rule is the same as that for the standard fuzzy system. However, the 

consequent uses a function gj that does not have an associated membership function. 

Virtually any function can be used for gj depending on the application. The independent 

variables of function gj may include the input variables of the fuzzy system 

(XI' x 2 ,···, xn) on any other variables. In this study, gj is defined as an affine function 

using the input variables of the fuzzy system as its independent variables, 

(5.12) 
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The crisp output ofa T-S fuzzy system is a weighted average of the outputs gj for 

i = l,.··,R. It is given by 

(5.13) 

The function gj defines an affine relationship between the inputs and output. The T-S 

fuzzy system performs a nonlinear interpolation between linear mappings. 

5.3.2 Methodology 

The design and construction of a fuzzy system is somewhat of an art, in that many 

possibilities exist, and the designer must make choices based upon skill and experience. 

The basic choices confronting the designer concern the set of predictor parameters used 

in the fuzzy model, the type of fuzzy model, type of membership functions, and number 

of rules. In this study, a special T -S fuzzy system with predefined membership functions 

was employed. 

Fuzzy identification refers to the process of determining the parameters of a fuzzy 

system (usually includes membership function centers, widths, coefficients, etc), by 

calibrating the fuzzy system with the training data set. There are several methods that can 

be used for fuzzy identification, including the least square (LS) method, recursive least 

square method (RLS), gradient methods, etc. Fuzzy clustering of input data with least 

square approach to finding consequents was used to identify the T -S fuzzy system in this 

study. Fuzzy clustering is the partitioning of the input portion of the training data into 

fuzzy subsets based on similarities between the data. The well-known fuzzy c-means 
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algorithm was used to cluster the input data. Fuzzy c-means is an iterative algorithm 

used to find input membership functions. 

The T -S fuzzy system in this study has the general form described by Eq. 5.11-

5.13. However, the membership function shape was predefined. It is calculated using an 

alternating optimization algorithm (Passino and Yurkovich, 1998), 

(5.14) 

Here, the input variable! and cluster center Vi are vectors with the dimension equal to 

the number of input variables. The parameter R represents the number of rules and 

clusters of the fuzzy model. The parameter "m> 1" is referred to as the fuzziness factor, 

which determines the amount of overlap of the clusters. A smaller value of m represents a 

smoother membership function. Before applying the c-means algorithm to find cluster 

centers ~i , the parameters Rand m need to be selected by the designer. Selection ofR 

and m in the first design is somewhat arbitrary. The final value of Rand m will be 

determined by comparing the performance ofthe fuzzy system on both the training data 

sets and independent testing data set. 

A fuzzy c-means algorithm is used to find the cluster centers ~i , so as to 

determine the value of membership Jlij' which is the membership of ith data pair in the 

jth cluster. The fuzzy c-means algorithm is realized by minimizing the objective function, 

M R 

J = II(/-lijr 1 ~j -~; 12 (5.15) 
j=1 ;=1 
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where M is the number of input-output data pairs in the training data set. Here a data pair 

refers to an input vector ;!i with n elements [Xl' X 2, "', Xn J i and its resulting output 

vector yi with only one element for a MISO fuzzy system. R is the number of clusters, 

also the number of rules. Minimization of the objective function results in cluster centers 

being determined to represent clusters of data. 

The fuzzy c-means method is an iterative algorithm. In the first iteration, the 

initial cluster centers !~ for each of the clusters (rules) were randomly chosen so that the 

initial cluster centers were evenly distributed within the data range. Then a new cluster 

.!:'~ew is calculated with the following equation, 

M 

L>J ().l~ew r 
i i=l 

.!:'new = -'----:c
M
-,------- (5.16) 

L/).l~ew r 
j=l 

where ).l~ew is the membership value for the ith rule with/h data pair. It is given as, 

(5.17) 

In this equation, .!:'~ld is the cluster center obtained from the previous iteration. In the first 

iteration, it is the initial cluster center .!:'~. The .!:'~ needs to be carefully chosen to avoid 

1 !i - .!:'~ld 1= 0 . In that case the fli;ew is undefined. The distance between the new cluster 

.!:'~ew and previous cluster center !~ld is defined by, 

(5.18) 
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The value of t~ is compared to an error tolerance tc' The tolerance tc is the amount of 

error allowed in calculating the cluster centers. Usually it is a small number, designated 

by the designer. If &~ < &e for all the cluster centers, the cluster centers !:'~ew accurately 

represent the input data. Let the current !:'~ew be the final cluster centers !:,i . Otherwise 

iteratively repeat the process untill the final cluster centers are found. 

With the cluster centers !:,i determined, the premise part of the fuzzy system is 

defined. Then we can apply the weighted least square method to find the coefficients of 

the linear function gi expressing the consequent of rule Ri in fuzzy system. The 

coefficients for the ith rule are expressed by a vector Q i = [ ai,o' ai,I' "', ai,n 1 . 

The equation used to compute a j is given by 

-T - -T 
a. = (X D2 X)-I X D2y 
-I I I 

(5.19) 

where X and Yare matrices composed of input and output training data. The matrix Di 

is a diagonal matrix containing the values of corresponding membership functions. They 

are defined as, 

_ [1 X= 
Xl 

(5.20) 

(5.21) 

o 
D. = 

I o 
(5.22) 
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With the cluster centers Vi and coefficients a j determined using the training data, 

the Takagi-Sugeno fuzzy system is constructed. 

5.3.3 Construction of basic-fuzzy system and NLR-Fuzzy system ozone forecast models 

The Takagi-Sugeno fuzzy system ozone forecast models were developed with the 

clustering method for the seven metro areas: Ashland, Owensboro, Bowling Green, 

Covington, Lexington, Louisville, and Paducah. The training data were created by the 

databases which consisted of ozone air quality data and meteorological data over a five 

year period, 1999-2003. The number of training data pairs (M) for the seven metro areas 

depend on the effective data in each database. In this study, data pairs used for the fuzzy 

system models ranged from 741 (for Bowling Green) to 764 (for Louisville). 

Development of the previous 2004 NLR ozone forecast models provided the input 

variables for the fuzzy system models. The candidate input variables have been described 

in section 5.1 (Table 5.2). All model terms shown in the table were statistically correlated 

with local 0 3 at the 95% confidence level. 

There were two types of T -S fuzzy models developed in this study: basic-fuzzy 

models and NLR-fuzzy models. The input variables used in the basic-fuzzy models were 

the same observed meteorological data and deterministic parameters used in the NLR 

model (Table 5.10). The NLR -fuzzy models used similar sets of variables, except that the 

nonlinear term from the NLR model replaced the three meteorological variables Tmax, 

WS, and RH which had been incorporated into this term (Table 5.11). 
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Table 5.10 Input Variables for Seven Metro Area Basic-fuzzy System 0 3 Models 

Variables ASH BWG CVG LEX LOU OWE PAH 

X1 Nonlin Nonlin Nonlin Nonlin Nonlin Nonlin Nonlin 

X2 Xmitt Xmitt Xmitt Xmitt Xmitt Xmitt Xmitt 

X3 Trend Trend Trend Trend Trend Trend Trend 

X4 RH RH RH RH RH Tmn_dep Tmn_dep 

Xs CC Tmn_dep Tmn_dep OZ48 OZ48 CC CC 

Xs WS WS Traj Traj Dewpl Dewpl 

X7 CC Tmn_dep WS WS 

Xa TS 

Count 6 6 5 7 8 7 7 

Table 5.11 Input Variables for Seven Metro Area NLR-fuzzy System 0 3 Models 

Variables ASH BWG CVG LEX LOU OWE PAH 

X1 Tmax Tmax Tmax Tmax Tmax Tmax Tmax 

X2 WS WS WS WS WS WS WS 

X3 RHx RHx RHx RHx RHx RHx RHx 

X4 Xmitt Xmitt Xmitt Xmitt Xmitt Xmitt Xmitt 

Xs Trend Trend Trend Trend Trend Trend Trend 

Xa RH RH RH RH RH Tmn_dep Tmn_dep 

X7 CC Tmn_dep Tmn_dep OZ48 OZ48 CC CC 

Xs Traj Traj Dewpl Dewpl 

Xg CC Tmn_dep 

X10 TS 

Count 6 6 5 7 8 7 7 

A computer program (Appendix A.1) was used for training the fuzzy system 

models. Equations 5.14 - 5.18 were applied to realize the iterative process for finding 

cluster centers Vi . The initial cluster centers with 5 rules and m = 5 for Louisville NLR-

fuzzy system model are shown in Table 5.12. The error tolerance &e used for finding 
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each cluster center v i was chosen as 0.01. Equations 5.19 - 5.22 were used for finding 

the coefficients !!i of the fuzzy consequence. 

Table 5.12 Initial Cluster Centers v~ for Louisville NLR-fuzzy System 0 3 Model 

Variables VOi Rule 1 Rule 2 Rule 3 Rule 4 RuleS 

Nonlin VOl 36.03 53.62 71.22 88.82 106.41 

Xmitt vo2 0.62 0.62 0.63 0.64 0.65 

Trend vo3 3.60 2.80 2.00 1.20 0.40 

RH V04 92.47 77.41 62.35 47.29 32.23 

OZ48 vos 0.10 0.30 0.50 0.70 0.90 

Traj vo
6 0.10 0.30 0.50 0.70 0.90 

Tmn_dep V07 -15.10 -6.30 1.50 9.30 17.10 

TS vos 0.90 0.70 0.50 0.30 0.10 

To determine the optimum combination ofR and m values for application in the 

model, a series ofNLR-fuzzy models for the Louisville metro area were developed with 

different combinations ofR (1,3,5, 10, 15,20,25,30) and m (1.5, 2,3,4,5,6). The 

resulting models were evaluated by comparing the model estimates from the 1999-2003 

calibration period (training data) and model hindcasts from the 2004 ozone season (test 

data) with the observed 0 3 concentrations, using mean absolute error (MAE) as the 

criterion of performance. With the training data, the models achieved the best 

performance with the combination m=3 and R=25 (Figure 5.11). However, with the 2004 

test data, the combination m=5 and R=5 produced the best results (lowest MAE). At 

higher values ofR the performance was equivalent up to about 15 rules; then deteriorated 

thereafter, indicating that over-training had occurred at higher R values (Figure 5.12). So 

for simplicity and to avoid over-training, the combination R=5 and m=5 was chosen for 

all of the NLR-fuzzy models and basic-fuzzy models. 
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Figure 5.11 Variation of the mean absolute error of the NLR-fuzzy model fit for 
Louisville (1999-2003) for selected values of fuzziness factor (m) and number of rules 
(R). 

6.9 

2004 HINDCASTS (Louisville) 
6.7 

.c 
a. 
a. -' m=2 
'-- 6.5 g 

-.0.- m=3 
... [J. •. m=4 

Q) 

2 6.3 ::J 

0 
Cf) 

--+- m=5 
._.'C}-.- m=6 

p-- -
l 

l 

.c 
co 6.1 c: 
co 
Q) 

E 
5.9 

/ 

./ 
l 

/ 
\"r----=~-----+--r--- .... 

. _. _. _. _. -' -\7........ .0 ... /,'. -- ___ __ 

". ';-:-:" .~. -...~~~:;;.;.,-;..:.." '.,::':::;' ~=-,"""",:-..,~,.,..,..,...,.,..,.,..,..~ 
>"0- ...... 

5.7 
0 5 10 15 20 25 

number of rules 

Figure 5.12 Variation of the mean absolute error of 2004 NLR -fuzzy model hindcasts for 
Louisville, for selected values of fuzziness factor (m) and number of rules (R). 
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The final fuzzy system models were characterized by the number of rules R, the 

fuzziness factor (m), the fuzzy cluster centers C~i ), and the coefficients of the fuzzy 

consequence (~i ). In addition, a training parameters, &c' representing the error tolerance 

in the iterative training process was designated for each model. Each of the seven fuzzy 

system models were configured with the same number of rules (R=5) and fuzziness factor 

(m=5). All models were trained using the same error tolerance (LC = 0.01). The cluster 

centers and coefficients were unique for each model. As an example, the parameters for 

Louisville NLR-fuzzy system model are listed in the Table 5.13 and Table 5.14. Each of 

the rules is actually a linear regression model which evaluates the 0 3 concentration based 

upon the input data. The value of the membership function for the ith rule gives the 

weight of this rule for the given data pair consisting of the input data vector and the 

observed 0 3 concentration. The predicted 0 3 concentration determined by the fuzzy 

model is the weighted average of the outputs for the five rules. 

Table 5.13 Final Cluster Centers v f 
i 

for Louisville NLR -fuzzy system 0 3 Model 

Variables Vi Rule 1 Rule 2 Rule 3 Rule 4 RuleS 

Nonlin V1
i 42.93 58.37 75.17 55.44 100.06 

Xmitt V2
i 0.64 0.65 0.65 0.64 0.64 

Trend V3
i 2.04 2.30 1.98 1.91 1.21 

RH V4
i 87.76 69.80 55.73 45.18 36.33 

OZ48 VSi 0.12 0.12 0.19 0.00 0.41 

Traj V6
i 0.12 0.20 0.38 0.12 0.49 

Tmn_dep V7
i 1.96 3.88 2.86 -6.76 1.19 

TS Vai 0.41 0.35 0.05 0.00 0.00 
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Table 5.14 Coefficients a j for Louisville NLR-fuzzy System 0 3 Model 

Variables Coet. Rule 1 Rule2 Rule 3 Rule 4 RuleS 

Intercept ao -185.53 -117.95 -285.18 -303.26 -180.65 

Nonlin a1 0.42 0.54 0.81 0.79 0.44 

Xmitt a2 379.65 281.76 482.46 508.14 392.20 

Trend a3 -2.57 -3.07 -1.36 -0.94 -0.30 

RH a4 -0.38 -0.49 -0.23 -0.17 -0.54 

OZ48 a5 13.21 7.35 10.48 9.35 7.43 

Traj a6 0.39 6.18 2.53 3.48 -2.87 

Tmn_dep a7 0.17 -0.10 -0.04 0.35 -0.10 

TS aB -3.33 -1.49 -6.05 -3.10 -5.55 

The parameters for Louisville Basic-fuzzy system model are listed in the Table 

5.15 and Table 5.16. Model parameters for other NLR-fuzzy and basic-fuzzy system 

models refer to Appendix B. In Table 5.13 - 5.15, Rule 5 appears to be associated with 

meteorological conditions conducive to high ozone. Rule 1 appears to be associated with 

conditions conducive to low ozone, and rules 2-4 appear to be associated with medium 

ozone concentrations. 

Table 5.15 Final Cluster Centers v J 
i for Louisville Basic-fuzzy System 0 3 Model 

Variables Vi Rule 1 Rule 2 Rule 3 Rule 4 RuleS 

Tmax V1
i 77.53 85.18 89.25 75.79 93.76 

WS V2
i 8.81 9.04 8.29 8.67 6.07 

RHx V3i 85.84 71.83 60.08 51.87 45.05 

Xmitt V4
i 0.64 0.65 0.65 0.64 0.64 

Trend V5i 1.88 2.19 1.99 2.07 1.05 

RH V6i 87.74 71.15 56.30 45.22 35.55 

OZ48 V7
i 0.14 0.12 0.18 0.00 0.35 

Traj VB
i 0.13 0.22 0.35 0.15 0.40 

Tmn_dep Vg
i 3.05 3.40 3.25 -7.73 -0.80 

TS V10
i 0.40 0.37 0.08 0.00 0.00 
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Table 5.16 Coefficients a j for Louisville Basic-fuzzy System 0 3 Model 

Variables Coef. Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 

intercept ao -211.54 -133.55 -235.24 -307.48 -225.46 

Tmax al 0.53 0.65 0.85 0.90 1.29 

WS a2 0.15 -0.41 -0.97 -0.51 -1.07 

RHx a3 -0.17 -0.14 -0.35 -0.38 -0.36 

Xmitt a4 399.23 298.06 432.92 518.30 355.47 

Trend as -2.41 -3.37 -1.79 -0.76 -0.61 

RH a6 -0.32 -0.54 -0.35 -0.19 -0.32 

OZ48 a7 12.79 6.67 10.66 11.94 9.60 

Traj as -1.78 5.85 3.03 3.16 -1.00 

Tmn_dep a9 -0.08 -0.24 0.13 0.35 -0.12 

TS al0 -3.64 -1.91 -5.19 -8.64 -5.09 

The fuzzy system model output can be computed using Equation 5.12 - 5.14 with the 

parameters determined above. The computer program in Appendix A.2 was used to test 

the fuzzy system models. The flow chart in Figure 5.13 illustrates the algorithm of a 

Takagi-Sugeno fuzzy system. 
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Figure 5.13 Flow chart of the algorithm of the Tasagi-Sugeno fuzzy system 
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5.3.4 Model Validation 

5.3.4.1 Validation of the fuzzy system models on the calibration data set. 

Performance of the seven basic-fuzzy and NLR-fuzzy system ozone forecast 

models on the calibration data set was evaluated by comparing the model estimates with 

the observed ozone concentrations from the calibration period, 1999-2003. For each of 

the seven models, the statistics of the model fit were good (Table 5.17 and 5.18). For both 

the basic-fuzzy and NLR-fuzzy system models, the biases were close to zero. For the 

basic-fuzzy system models, the MAE of the model fits ranged from 5.65 ppb (Lexington) 

to 6.96 ppb (Ashland). On average, the MAE of the seven models was 6.47 ppb, or 10.8% 

of the mean daily peak 0 3 concentration for the period (NMAE). For the NLR-fuzzy 

system models, the MAE of the model fits ranged from 5.83 ppb (Lexington) to 6.70 

(Ashland). The MAE of the fits was on average 6.34 ppb. The average NMAE was 

10.5%. Due to the application of the parameter Traj and OZ48 that accounted for the 

pollutant transport, the NMAE for Louisville and Lexington were slightly lower than 

those of the other cities. The MAE of Louisville basic-fuzzy and NLR-fuzzy were 6.53 

and 6.41 ppb, which were 10.3% and 10.1 % of the mean daily peak 0 3 concentration 

respectively. The correlation coefficient R2 was 0.75 for the basic-fuzzy model and 0.76 

for the NLR-fuzzy model. The Lexington model fit had the lowest MAE of 5.65 for 

basic-fuzzy model and 5.83 ppb for NLR-fuzzy model, which were much lower than the 

average MAE of the seven models. The low MAE of Lexington was probably because 

the mean 0 3 concentration was lower than that of the other cities. 
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Table 5.17 Error Statistics of Model Fits for the Basic-fuzzy 03 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

bias (ppb) -0.12 -0.02 -0.04 0.10 0.12 0.10 0.20 0.05 

MAE (ppb) 6.96 6.12 6.89 5.65 6.53 6.33 6.78 6.47 

RMSE (ppb) 8.70 7.90 8.96 7.30 8.35 8.10 8.60 8.27 

NMAE (%) 11.4% 10.2% 11.0% 10.2% 10.3% 10.6% 11.4% 10.8% 

[03]avg 60.8 59.8 62.4 55.5 63.5 59.5 59.3 60.12 

R2 0.74 0.72 0.71 0.73 0.75 0.70 0.67 0.72 

Count 747 741 758 763 764 751 751 

Table 5.18 Error Statistics of Model Fits for the NLR-fuzzy 0 3 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

bias (ppb) 0.10 0.14 0.30 0.02 0.33 0.26 -0.49 0.09 

MAE (ppb) 6.70 6.20 6.51 5.83 6.41 6.30 6.41 6.34 

RMSE (ppb) 8.47 7.99 8.37 7.46 8.23 8.06 8.20 8.11 

NMAE (%) 11.0% 10.4% 10.4% 10.5% 10.1% 10.6% 10.8% 10.5% 

[03]avg 60.8 59.8 62.4 55.5 63.5 59.5 59.5 60.14 

R2 0.72 0.71 0.74 0.72 0.76 0.71 0.71 0.72 

Count 747 741 758 763 764 751 751 

The NAAQS for ozone is 0.08 ppm. The value of 85 ppb is used for 

determination of exceedence, since 84 ppb (0.084 ppm) rounds to 0.08 ppm. For our 

ozone forecast models, the alarm threshold for unhealthy 0 3 concentration was chosen as 

80 ppb. Louisville and Covington (Cincinnatti MSA) are the two largest metro areas and 

both have a long standing ozone problem. The number of ozone exceedence days in 

Louisville and Covington were 98 and 95 respectively during the period 1999-2003. The 

NLR-fuzzy forecast model for Louisville and Covington successfully detected 85% and 

71 % of the respective local ozone exceedence days. The false alarm rates were 0.16 and 

0.21 respectively. For the other areas, the NLR-fuzzy forecast model predicted at least 
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50% of the local ozone exceedence days, with the FAR less than 0.37 (Table 5.19). The 

forecast skills of the basic-fuzzy system models were close to the corresponding NLR-

fuzzy system models (Table 5.20). 

Table 5.19 Detection Statistics of Model Fit for the NLR-fuzzy 03 Models 
(Calibration data 1999-2003, threshold = 80 ppb) 

Statistic Sym. ASH BWG CVG LEX LOU OWE PAH Average 

Detection Rate DR 0.69 0.54 0.71 0.50 0.85 0.54 0.54 0.62 

False Alarm Rate FAR 0.22 0.24 0.21 0.37 0.16 0.26 0.20 0.24 

Critical Success Index CSI 0.62 0.53 0.63 0.46 0.74 0.47 0.49 0.56 

Detected Exceedences DE 45 21 67 11 83 26 26 39.9 

Exceedences EX 65 39 95 22 98 48 45 58.9 

Alarms AL 81 41 106 30 118 38 35 65.1 

False Alarms FA 18 10 22 11 19 10 7 13.9 

Table 5.20 Detection Statistics of Model Fit for the Basic-fuzzy 0 3 Models 
(Calibration data 1999-2003, threshold = 80 ppb) 

Statistic Sym. ASH BWG CVG LEX LOU OWE PAH Average 

Detection Rate DR 0.69 0.54 0.65 0.55 0.79 0.48 0.56 0.61 

False Alarm Rate FAR 0.22 0.21 0.19 0.29 0.14 0.14 0.24 0.20 

Critical Success Index CSI 0.63 0.54 0.60 0.53 0.72 0.46 0.48 0.57 

Detected Exceedences DE 45 21 62 12 77 23 25 37.9 

Exceedences EX 65 39 95 22 98 48 45 58.9 

Alarms AL 79 39 98 28 107 29 34 59.1 

False Alarms FA 17 8 19 8 15 4 8 11.3 

Graphical techniques are also useful for evaluating model performance. A scatter 

plot of model estimates versus observed 0 3 concentration visually depicts how well the 

model fits the data over the entire range of observations. For example, the scatter plot of 
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model estimates vs. observations for the Louisville NLR-fuzzy model indicated a good fit 

between model estimates and ozone observations for the 1999-2003 calibration data set 

(Figure 5.14). 
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Figure 5.14 Scatter plot ofNLR-fuzzymodel estimates against observed 0 3 

concentrations for Louisville 

120 

A scatter plot of residuals ( [03]pred -[03]obs) versus predicted 0 3 concentration 

indicates the distribution of the prediction errors through the range of observations. For 

example, the scatter plot of residuals vs. predicted 0 3 concentration for Louisville (1999-

2003) indicates that the model is essentially unbiased throughout the range of predictions 

(Figure 5.15). Scatter plots for the other metro areas fuzzy system models were similar to 

those of the Louisville model. 
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Figure 5.15 Residual plot of the NLR-fuzzy model prediction error versus predicted 
ozone concentrations (Louisville) 

5.3.4.2 Validation of the fuzzy system models with and independent data set 

The ozone forecast models were designed to provide ozone forecasts using 

forecast meteorological data. The basic-fuzzy and NLR-fuzzy system ozone forecast 

models for the seven metro areas were tested with independent data, by using the fuzzy 

system models to make both forecasts and hindcasts of the 03 concentrations during 2004 

ozone season. Model predictions made with observed meteorological data are called 

hindcasts, and model predictions made with forecasted meteorological data are forecasts. 

Errors in the forecast meteorological data tend to reduce the accuracy of the ozone 

forecast models. 

The model hindcast errors for the year of 2004 were comparable to the model fit 

errors, but slightly higher, as expected (Table 5.21 and Table 5.22). For the NLR-fuzzy 

system models, the seven-city average MAE was 7.43 ppb, as compared to 6.34 ppb for 
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the model fits. The average MAE for the basic-fuzzy system models was 7.61, compared 

to 6.47 ppb for the model fit. The biases of the model hindcasts were all positive, ranging 

from 1.01 ppb (Louisville) to 9.31 ppb (Ashland) for NLR-fuzzy models, and ranging 

from 0.96 ppb (Louisville) to 10.10 ppb (Ashland) for basic-fuzzy models. The unusually 

high bias for the Ashland hindcasts could not be explained. This high systematic error 

produced a high MAE for Ashland. The Louisville and Lexington models both performed 

measurably better than the other models. The hindcast MAEs for these two models were 

both lower than the seven-city average, by more than 1.0 ppb. 

Table 5.21 Error Statistics ofNLR-fuzzy Model Hindcasts for 2004 Ozone Season 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ppb) 9.31 5.79 5.48 2.01 1.01 5.69 6.23 5.65 

MAE (ppb) 10.57 7.17 7.37 5.50 5.94 7.31 8.16 7.43 

RMSE (ppb) 12.81 8.86 8.90 6.70 7.62 8.92 10.13 9.13 

NMAE (%) 21.2% 15.4% 13.0% 12.0% 11.1% 15.6% 16.5% 14.7% 

[03].V9 49.8 49.9 56.7 46.0 53.6 50.0 49.3 50.8 

R2 0.71 0.79 0.90 0.66 0.71 0.77 0.89 0.78 

Count 152 150 151 151 152 151 152 

Table 5.22 Error Statistics of Basic-fuzzy Model Hindcasts for 2004 Ozone Season 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ppb) 10.10 5.84 5.57 2.19 0.96 5.41 6.22 5.90 

MAE (ppb) 11.21 7.17 7.65 5.47 5.93 7.71 8.15 7.61 

RMSE (ppb) 13.47 8.85 9.30 6.69 7.66 9.26 10.05 9.33 

NMAE (%) 22.5% 15.4% 13.5% 11.9% 11.1% 15.4% 16.5% 15.0% 

[03]0.9 49.8 49.9 56.7 46.0 53.6 50.0 49.3 50.8 

R2 0.71 0.81 0.87 0.73 0.71 0.81 0.92 0.79 

Count 152 150 151 151 152 151 152 
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The NLR-Fuzzy system ozone forecast models also performed well when the 

models were tested in the forecast mode with forecasted meteorological data as input 

(Table 5.23 and Table 5.24). The average MAE of the model forecasts for the NLR-fuzzy 

and basic-fuzzy models were 7.78 ppb and 8.03 ppb respectively, which was about 5% 

and 6% higher than the values of model hindcasts. The characteristic degradation of 

model accuracy in going from model fit estimates to model hindcasts, and then to model 

forecasts is illustrated in Figure 5.16. This degradation is normally observed for an 

ensample of forecasts, for example for an ozone season. For particular forecasts, it is 

sometimes the case that the errors of the meteorological forecasts compensate for the 

built-in model errors, due to random causes unexplained by the model. The forecasts of 

the Ashland and Paducah models had lower MAEs than for the hindcasts. The probable 

reason is because the systematic component of the MAE was lowered, since the model 

biases in both cases dropped significantly in going from hindcast to forecast. 

Table 5.23 Error Statistics ofNLR-fuzzy Model Forecasts for 2004 Ozone Season 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ppb) 6.17 1.50 3.71 1.09 0.38 2.21 2.11 2.45 

MAE (ppb) 8.88 7.56 8.26 6.42 7.66 7.96 7.71 7.78 

RMSE (ppb) 11.20 9.60 10.48 7.81 9.76 10.18 9.81 9.83 

NMAE (%) 17.8% 15.2% 15.6% 15.0% 15.3% 15.9% 15.6% 15.3% 

[03]avg 49.8 49.9 56.7 45.9 53.6 50.0 49.3 50.8 

R2 0.70 0.78 0.85 0.64 0.66 0.86 0.77 0.75 

Count 152 150 151 151 152 151 152 
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Table 5.24 Error Statistics of Basic-fuzzy Model Forecasts for 2004 Ozone Season 

Statistic ASH 

Bias (ppb) 6.95 

MAE (ppb) 9.57 

RMSE (ppb) 11.88 

NMAE (%) 19.2% 

[03]av9 49.8 

R2 0.70 

Count 152 
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Figure 5.16 Degradation of model performance (data for NLR -fuzzy models) in going 
from model fit estimates to hindcasts to forecasts. Statistics are model averages for the 
seven cities. The forecast lead time is approximately 24 hours. 

The R2 values for all hindcasts and forecasts were good, demonstrating that a 

large portion of the 0 3 variation (70% or better in most cases) was explained by the 

models. This fact is further demonstrated by time series plots of observed 0 3 with model 
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predictions (hindcasts and forecasts ofNLR-fuzzy models) for the seven models during 

the 2004 ozone season (Appendix C, Figure Al to Figure A7), in which all model 

hindcasts and forecasts tracked the day-to-day ozone variation reasonably well. 

5.3.5 Comparison ofNLR-fuzzy, basic-fuzzy, and NLR models 

The NLR ozone forecast models are well-established and have been used for 

operational next-day ground-level ozone forecasts for several metropolitan areas in 

Kentucky since 2005. The performance of the NLR models were compared with NLR­

fuzzy and basic-fuzzy models described in the previous sections. Comparison of the 

model fit estimates for these ozone forecast models showed the NLR-fuzzy and basic­

fuzzy models had slightly better performance statistics than that of the NLR model. The 

performance of the NLR-fuzzy model and basic-fuzzy model were close. For example, 

the seven city average MAE for the NLR-fuzzy models and basic-fuzzy models were 

6.34 ppb and 6.47 ppb respectively. The corresponding value for the NLR models was 

6.76 ppb. 

Model hindcasts and forecasts for 2004 ozone season for the NLR-fuzzy, basic­

fuzzy, and NLR models were compared (Table 5.25 and Table 5.26). During the 2004 

ozone forecast season, the meteorological forecast data used for the NLR model forecasts 

were saved. This data consisted of text files of the model output statistic (MOS) forecasts 

from the daily 1200 UTC NGM numerical weather model runs for each metro area. The 

availability of this data made it possible to compare the NLR-fuzzy, basic-fuzzy and NLR 

regression models operating in the forecast mode. 
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Table 5.25 Statistics of 2004 Model Hindcasts for the Ozone Forecast Models 

Statistic ASH BWG COV LEX LOU OWE PAH Average 

Bias (ppb) 9.3 5.8 5.5 2.0 1.0 5.7 6.2 5.6 

NLR-fuzzy MAE (ppb) 10.6 7.2 7.4 5.5 5.9 7.3 8.2 7.4 

NMAE (%) 21.2% 15.4% 13.0% 12.0% 11.1% 15.6% 16.5% 15.7% 

Bias (ppb) 10.5 5.8 5.6 2.5 1.0 5.4 6.2 5.0 

Basic-fuzzy MAE (ppb) 11.4 7.2 7.7 5.5 5.9 7.7 8.1 7.6 

NMAE (%) 22.9% 15.4% 13.5% 12.0% 11.0% 15.4% 16.4% 15.1% 

Bias (ppb) 9.6 5.7 5.6 2.5 1.0 5.7 5.4 5.6 

NLR MAE (ppb) 10.8 7.4 7.5 5.8 6.8 7.8 8.0 7.7 

NMAE (%) 21.7% 15.9% 13.3% 12.6% 12.6% 15.7% 16.2% 15.3% 

[03)avg 49.8 49.9 56.7 45.9 53.6 50.0 49.3 50.8 

sample size 152 150 151 151 152 151 152 

Table 5.26 Statistics of the 2004 Model Forecasts for the Ozone Forecast Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ppb) 6.2 1.5 3.7 1.1 0.4 2.2 2.1 2.5 

NLR-fuzzy MAE (ppb) 8.9 7.6 8.3 6.4 7.7 8.0 7.7 7.8 

NMAE(%) 17.9% 15.1% 15.6% 15.0% 15.3% 15.9% 15.6% 15.3% 

Bias (ppb) 7.0 1.2 5.1 1.4 0.4 3.1 3.1 2.9 

Basic-fuzzy MAE (ppb) 9.6 7.7 8.6 6.5 7.6 8.1 8.2 8.0 

NMAE (%) 19.3% 15.4% 15.1% 15.1% 15.2% 16.2% 16.6% 15.9% 

Bias (ppb) 7.0 1.3 3.7 1.5 0.3 3.0 2.0 2.7 

NLR MAE (ppb) 9.3 7.8 8.6 6.5 8.2 8.5 8.1 8.1 

NMAE (%) 18.7% 15.7% 15.1% 15.2% 15.3% 17.0% 16.4% 16.0% 

[03)avg 49.8 49.9 56.7 45.9 53.6 50.0 49.3 50.8 

sample size 152 150 151 151 152 151 152 

For both the model hindcasts and forecasts, the NLR-fuzzy models had equivalent 

or slightly better performance statistics than those of the NLR models and basic-fuzzy 

models. For the model forecasts, the average MAE for the seven metro areas was 7.8 ppb. 
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This statistic was comparable to the average MAEs ofthe basic-fuzzy model (8.0 ppb) 

and NLR model (8.1 ppb). The 2004 ozone season in Kentucky was significantly cooler 

and wetter than usual (as was the case for most of the eastern U.S.), with the result that 

there were very few NAAQS exceedences. Therefore, there was insufficient data for 

reliable comparison of the DR and FAR statistics. The sample time series plot for 

Louisville, June 2004 (Figure 5.17) showed the model hindcasts for the three types of 

ozone forecast models tracked the day-to-day ozone variation reasonably well. 
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Figure 5.17 Time series of observed 8-hr ozone concentrations in Louisville and forecasts 
from the NLR, basic-fuzzy and NLR-fuzzy models during June of2005. 
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CHAPTER VI 

PM2.5 FORECAST MODELS 

PM2.5 concentrations are correlated with ground-level 0 3 concentrations during 

the summer ozone season. One reason for this is that like 0 3, much of the summertime 

PM2.5 is photochemically generated, and the NOx and VOCs are common precursors for 

PM2.5 and ground-level 0 3. The formation of both the secondary PM2.5 and ground-level 

ozone are significantly affected by weather conditions. The time series plot (Figure 6.1) 

using the data for Louisville 2001 summer season demonstrated the similarity of the 

variation between 24-hr average PM2.5 concentrations and the daily maximum 8-hr 0 3 

concentrations. 
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Variation of Ozone and PM25 in summer, 2001, Louisville 

120.0 ,-----.-.----.. -.--..... ---.-..... -.-------.. -.-.------.---------------.. - ........ --... -.. -- .. --.. ----, 

.,.§ 100.0 

CI 
::::L 80.0 
.;; 
oJ 

::E D.. 60.0 

.c 
~ 40.0 
..; 

o 20.0' 

0.0 +---,---,------,----.,--,---,----~--' 

5/1 5/15 5/29 6/12 6/26 7/10 7/24 817 8/21 9/4 9/18 

Date 

Figure 6.1 Variation of ozone and PM2.5 in summer 2001 (Louisville) 
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In this study, the summer PM2.5 forecast models for seven selected metro areas in 

Kentucky (Ashland, Bowling Green, Covington, Lexington, Louisville, Owensboro, and 

Paducah) were developed based on the databases for the ozone forecast models. The 

same candidate prediction parameters as used for ozone (Table 5.2) were correlated with 

the summertime PM2.5 concentrations. The parameters that were statistically significant 

in the regression processes were used in the PM2.5 forecast models. Also, exploratory 

research was done to find new prediction parameters for PM2.5 forecasting. 

High PM2.5 concentrations were mostly observed in the summertime. In the other 

seasons, lower temperature and less solar radiation reduced the photo-chemical reactions 

that form the secondary PM2.5. However, PM2.5 concentrations were higher in the 

wintertime than in springtime. This was probably due to increases ofthe primary PM2.5. 

The use of fossil fuel, including gas, oil, and coal, in home heating ovens and industrial 

boilers in winter increased the primary PM2.5 emissions. Also, the mixing heights tend to 

be lower in the winter, thus reducing the dilution of emitted particles. In this study, 

exploratory research was conducted to find the relationship between the winter PM2.5 

concentrations and the available meteorological parameters and other derived prediction 

parameters. The winter PM2.5 forecast models were developed for seven selected metro 

areas in Kentucky. 
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6.1 Preliminary Data Analysis 

The PM2.5 concentrations have a similar seasonal pattern for each metro area: In 

the summer season, especially in the warmest period June through August, the PM2.5 

concentrations were significantly higher than those in the other months, indicating the 

important influence of high temperature and photochemistry on secondary PM2.5 

formation. In winter, the PM2.5 concentrations reached a secondary, much smaller peak, 

in January or February, primarily due to the greater fuel use for heating. For example, for 

the Louisville PM2.5 data in the period 1999-2003, the monthly average PM2.5 

concentrations were high in June and August (21.9 and 24.1 Ilg/m3 respectively) and 

peaked at 27.4 Ilg/m3 in July. In Louisville, the 5-year monthly average PM2.5 

concentration was lowest at 14.3 Ilg/m3 in April (Figure 6.2) . 
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Figure 6.2 Monthly average PM2.5 concentrations for Louisville. (Data: 1999-2003) 
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The PM2.5 concentrations in the unhealthy for sensitive groups category (>40 

llg/m3) mostly occurred in summer. For example, for the data of Louisville over the 

1999-2003 period, there were 56 PM2.5 exceedence days, 44 of which occurred in 

summer (May to September), and 39 occurred in June, July, or August. Extremely high 

PM2.5 concentrations occurred on July 4th for each of the five years (Figure 6.3). This 

was undoubtedly due to the use of fireworks on that day. 
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Figure 6.3 Variation of daily PM2.5 concentration in summer season, Louisville 

As discussed in Chapter II, the national and regional PM2.5 concentrations have 

declined significantly in recent years. The PM2.5 trend of the seven metro areas in 

Kentucky was consistent with nationwide and regional trends. The annual average PM2.5 

concentrations decreased from 1999 to 2003 for all seven metro areas (Figure 6.4). From 

1999 to 2003, the Ashland area achieved the greatest decline of 16.3% and the 
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Owensboro area had the smallest decrease of 2.1 %. On average, the annual average 

PM2.5 concentrations decreased 9.9% for the seven metro areas. The 8th maximum PM2.5 

concentration for each year is a good statistic to represent the upper end of the 

distributions, because the year-to-year variation is less random in nature than for the 

highest few values, which are more sensitive to aberrant events (Cobourn and Lin, 2004). 

For the 8th maximum PM2.5 concentrations, the Ashland area decreased 17.3%. All of 

the other areas exhibited declines during the period, with the exception of the Covington 

area, in which this statistic increased 3.8% over the period. On average, the 8th maximum 

PM2.5 concentration of the seven metro areas declined by 9.4% (Figure 6.5). 
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Figure 6.4 Inter-annual patterns of annual average daily PM2.5 concentrations for the 
seven Kentucky metro areas for the period 1999-2003. 
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Figure 6.5 Composite inter-annual patterns of annual 8th maximum daily PM2.5 

concentrations for the seven Kentucky metro areas for the period 1999-2003. 

The drop ofPM2.5 concentrations from 1999 to 2003 was partly due to the fact 

that 1999 had a hot, dry summertime and 2003 had a cool, wet summertime. Therefore, 

the scale of the downward trends may better reflect the trends of the PM2.5 concentrations 

in those metro areas. The scale of the downward trends can be ascertained by determining 

best-fit linear trend lines through the data. For both the annual average and 8th maximum 

PM2.5 data, the trend line slopes were negative for each metro area, except the 8th 

maximum value for Covington area (Table 6.1). For the annual average PM2.5 

concentration, the average linear rate of decline for the seven areas was -0.4 

Jlg. m-3 
• yr- I

• The magnitude of the annual average PM2.5 concentration decline rate 

was less than 8th maximum PM2.5 concentration decline rate (-0.6 Jlg. m-3 
• yr- I

). This is 

because these trends were generated from a larger data set (~765) than that of the 8th 
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maximum trend statistics (~40). Note also that the statistical uncertainty of the slope of 

the annual average trendline, expressed in terms of standard error, was much less than the 

corresponding uncertainty for the 8th maximum (Table 6.1). 

Table 6.1 Estimated Trend Line Slopes in PMZ.5 Concentration (/lg.m3
.yr-l, 1999-2003) 

ASH BWG CVG LEX LOU OWE PAH Average 

8th maximum -1.2 -1.2 0.2 -0.5 -0.3 -0.8 -0.4 -0.6 

Std error 1.0 0.6 1.4 0.4 1.3 0.9 0.7 

Annual mean -0.7 -0.6 -0.6 -0.5 -0.1 -0.1 -0.5 -0.4 

Std error 0.2 0.1 0.1 0.1 0.4 0.1 0.2 

The trends ofPM2.5 concentrations in summertime were also investigated by 

comparing the seasonal average and 8th maximum PM2.5 concentrations in the summer of 

1999 through 2003 (Figure 6.6 and Figure 6.7). 
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Figure 6.6 Inter-annual patterns of summer average daily PM2.5 concentrations for the 
seven Kentucky metro areas for the period 1999-2003. 
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Figure 6.7 Composite inter-annual patterns of summer 8th maximum daily PM2.5 

concentrations for the seven Kentucky metro areas for the period 1999-2003. 
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High PM2.5 concentrations in 2002 summer, due to the high temperature in that 

season, affected the linear trend lines for some of the areas. Though most of the areas 

both seasonal average and 8th maximum PM2.5 concentrations for 2002 summer season 

were lower than those of 1999 summer season, the corresponding PM2.5 trend lines may 

be upward. Counting the seasonal average trend lines, four of the seven lines are 

downward and three lines are upward. For the 8!h maximum trend lines, three lines are 

downward and four lines are downward. The average linear rate of decline for the seven 

was -0.3 for seasonal average and 0.1 for 8th maximum PM2.5 concentrations (Table 6.2). 

The summer PM2.5 is affected by meteorology. Therefore, based on the linear fits, there 

is really no clear trend for the summer PM2.5 concentrations for those areas. 

Table 6.2 Estimated Trend Line Slopes for Summer PM2.5 Concentration 
(llg.m3.yr-l 1999-2003) 

ASH BWG CVG LEX LOU OWE PAH Average 

8th maximum 0.2 -0.3 0.3 0.6 0 -0.2 -0.1 0.1 

Std error 0.6 0.4 0.2 0.4 0.2 0.3 0.3 
Seasonal 
mean -0.3 -0.9 0 0.1 0.1 -0.2 -0.6 -0.3 

Std error 0.8 0.3 0.8 0.4 0.8 0.7 

6.2 PM2.5 predictors 

The parameters for ozone forecast models listed in Table 4.4 were also used as 

candidate input variables for PM2.5 forecast models. In addition, a new parameter was 

developed for PM2.6. The PM2.5 concentrations are affected by the meteorological 

conditions, because atmospheric photochemical reactions also form PM2.5 in the 
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summertime. Daily maximum temperature is related to secondary PM2.5 formation 

through the temperature-dependent homogeneous and heterogeneous reaction rates, 

which convert some common gaseous pollutants into very small particles. A second-

order polynomial best represents the relationship between maximum temperature and 

PM2.5 concentrations (Figure 6.8 a). The relative humidity is negatively correlated with 

PM2.5 concentrations with a second-order polynomial (Figure 6.8 b). Daily rain reduces 

PM2.5 levels by directly scavenging particulate matter and its precursors. A straight line 

can represent the relationship between daily rain and PM2.5 concentrations (Figure 6.8 c). 

The mid-day wind speed dilutes the concentrations ofPM2.5 and its precursors. This 

phenomenon could be theoretically explained by the Gaussian plume diffusion model and 

fixed-box model (Equation 5.1 and 5.2). The exponential function provides a good fit to 

the wind speed and PM2.5 concentration data (Figure 6.8 d). 
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The trend parameter was included in the PM2.5 forecast model, based on the fact 

that the observed PM2.5 concentrations have declined gradually in the past decade in each 

of the seven metropolitan areas. PM2.5 and its precursors, particularly NOx, can be 

transported over distances of several hundred kilometers or more. For the Louisville and 

Lexington models, the two trajectory-based parameters "OZ48" and "traj" used in the 

ozone models were added to account for the transport ofPM2.5 and its precursors. These 

parameters were not included in the other models due to logistical and staffing limitations. 

The clear sky atmospheric transmittance at noontime accounts for the solar 

radiation which drives the photochemical ozone formation. The minimum temperature 

departure may serve as a day-to-day modifier of the seasonal effect. Cloud cover directly 

reduces solar radiation. The parameter Saturday, Friday, and Holiday account for the 

aberrant events of PM2.5 emissions in special days. The special events occurred in holiday, 

such as using fireworks, could significantly increase PM2.5 concentrations. In Saturday 

and Friday, reduction of traffic and manufacturing could reduce the emission ofVOC and 

NOx, which are the precursors of secondary PM2.6. 

A wind rose diagram displays the frequency (percentage) of wind directions for a 

specific location over a specified period oftime (Figure 6.9). In this study, a binary 

parameter "wind rose" was developed based on the daily resultant wind direction (also 

referred to wind sector), which relate to the short distance transportation of the particulate 

matter from local sources. 
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Figure 6.9 Wind rose diagram for June 1- June 31, 2002, Louisville (NRCS, 2006). 

The Louisville PM2.5 concentrations and meteorological data during 1999-2003 

winter season (November through March) were studied to develop the parameter wind 

rose. First, a NLR PM2.5 forecast model using aforementioned parameters was developed 

and was used to estimate the PM2.5 concentrations for a calibration data set. The model 

estimates were compared with the observed PM2.5 concentrations. The days with PM2.5 

concentrations that were highly under-estimated (over 10 llg/m3) and highly over­

estimated (over 8 Ilg/m3) by the model were selected for investigation. To determine the 

value of this parameter wind rose, we found the wind direction sectors associated with 

under-estimated PM2.5 concentrations and the sectors associated with over-estimated 

PM2.5 concentrations, based on the air quality data and wind rose data. During the 

investigating period, there were 39 under-estimated days and 30 over-estimated days. It 

was found that daily wind directions in the 190°-240° sector were associated with 41 % of 

the under-estimated days (16 of 39); daily wind directions in the 250°-320° sector were 

associated with 40% of the over-estimated days (12 of30). So the sectors 190°-240° and 
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250°-320° were designated as the under-estimated sector and the over-estimated sector 

respectively. The daily wind directions were obtained from Local Climatological Data 

Reports issued by National Climatic Data Center (NCDC, 1999-2004a). The parameter 

"wind rose" was assigned a value 1.0 if the daily resultant wind direction was in the 

under-estimated sector, a value -1.0 if the daily resultant wind direction was in the over­

estimated sector, and a value 0.0 for other sectors. A case study using PM2.5 air quality 

data and wind rose data in 1999-2003 for Louisville area showed a significant influence 

of daily wind direction on the PM2.5 concentrations. When a linear function was fitted to 

the data, the straight line had a slope of3.7 and a determination coefficient R2 0fO.06. 

The parameter wind rose was significant in the multiple linear regression for the 

Louisville PM2.5 forecast model, with a coefficient of 1.91 and t-value of 4.73. 
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6.3 Summer PM2.5 Forecast Models 

Nonlinear regression (NLR) models were developed to forecast the PMZ.5 

concentrations in the summer season for the metro areas Ashland, Bowling Green, 

Covington, Lexington, Louisville, Owensboro, and Paducah. The databases used for 

developing the summer PMz.5 forecast models consist of data during the summer ozone 

season (May to September), over the five year period 1999-2003. For the Louisville and 

Covington area, the observed PMZ.5 data were available for each day of each season. The 

Louisville and Covington databases had 760 days and 669 days of complete data after the 

data screening process. For the other metro areas, the PMZ.5 concentrations were reported 

every three days. The effective number of days for these areas ranged from 215 (Paducah) 

to 254 (Owensboro), after removing the days with missing air quality data or 

meteorological data. 

The operational PMZ.5 forecast model for Louisville was a hybrid model, 

assembled with a similar fitting procedure as the ozone hybrid model, viz. a standard 

model fitted to the complete database and a Hi-Lo model fitted to the data set with 10% 

upper and 10% lower PMZ.5 concentrations. Based on the fact that during the warm 

season high PMZ.5 concentrations usually occur on days with high temperature and low 

surface wind speed, the criteria used for invoking the Hi-Lo model was defined as 

follows: 

• Maximum temperature greater than 90 OF; 

• Wind speed less than 7.6 mph; 

The thresholds of maximum temperature and wind speed were determined by analyzing 

the Louisville data during a five year period. These switching criteria were slightly 
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different from the 3S criteria for the ozone forecast models. The parameter cloud cover 

was not used as a switching criterion for PM2.5 models, because a direct relationship 

between the cloud cover and high PM2.5 concentrations was not observed through the 

Louisville data. 

Except for the Louisville model, the operational PM2.5 forecast models for the 

other six metro areas were standard NLR models that were only fitted to the complete 

databases. The hybrid technique was not applied on those models, because the databases 

for these areas were smaller and so the number of days for developing the Hi-Lo model 

(typically 80-90) was insufficient for developing a valid statistical model. 

6.3.1 Model development 

As with the ozone models, development of each nonlinear regression PM2.5 

forecast model entailed two separate fitting procedures: one for the nonlinear term, and 

another for the linear terms. In the first step, a nonlinear term was developed considering 

the nonlinear behavior of PM2.5 with part of the candidate input parameters. It has been 

shown that maximum temperature, wind speed, and relative humidity are significantly 

correlated with PM2.5 concentrations with nonlinear functions (Figure 6.7). Many forms 

of the interactive nonlinear function were studied on the each of the seven databases. The 

combination of a second order polynomial function for maximum temperature, an 

exponential function for wind speed, and a second order polynomial function for relative 

humidity worked best. The final form of the nonlinear term was the same for each of the 

seven models: 
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The area specific coefficients a] to a5 were determined through a separate fitting process 

for each metro area (Table 6.3). For the Louisville PM2.5 forecast model, the standard 

model and the Hi-Lo model used the same nonlinear term. The nonlinear terms for the 

model of Bowling Green, Owensboro, and Paducah excluded the second order term of 

Tmax because the coefficient a3 was not statistically significant in the regression process 

with the interactive nonlinear function. 

Table 6.3 Nonlinear Coefficients for Seven PM2.5 Models 

Coefficient ASH BWG CVG LEX LOU OWE PAH 

a1 1.35 -1.14 2.67 2.92 1.70 -2.13 -1.48 

a2 -0.04 0.02 -0.08 -0.08 -0.05 0.04 0.03 

a3 0.00046 0.00000 0.00068 0.00065 0.00050 0.00000 0.00000 

a4 -0.0449 -0.0096 -0.0313 -0.0295 -0.0277 -0.0386 -0.0492 

a5 -0.0084 -0.0098 -0.0082 -0.0089 -0.0072 -0.0093 -0.0100 

In the second step, the full nonlinear model was assembled by adding candidate 

linear terms to the nonlinear "sub-model", and in a stepwise regression procedure various 

regression models for predicting PM2.5 concentrations were examined. The stepwise 

regression method does not examine all combinations, so there is no guarantee of an 

absolute "best" model. Therefore after the stepwise procedure, physical reasoning and 

previous model building experience was applied to examine other combinations and 

determine the final model. In this process, the t-statistic was used to judge the 

significance of each parameter in the regression, and the correlation coefficient (R2) was 

used to evaluate the overall model performance. The final equation for the forecast model, 

consisted of an intercept and a group of up to ten explanatory variables, 
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PM2.5 = bo + bJNonlin + b 2 Trend + b 3Dewpt + b 4 Rain + bsCC 

+ b 6 Windrose+ b 7Hoi + b 8Sat + b 9 Tmn_ dep + b JO Traj + b JJ OZ48 
(6.2) 

Some of the parameters were dropped from the models if they were not significant in the 

linear regression. Therefore, the input variables and their coefficients were unique for 

each PM2.5 forecast model (Table 6.4). 

Table 6.4 Model Coefficients for the Seven Metro Area NLR PM2.5 Models 

Variable Coef. ASH BWG CVG LEX LOU OWE PAH 

Intercept bO -6.13 -0.38 -6.72 -6.50 -3.85 -3.34 1.76 

Nonlin b1 0.63 1.00 0.78 0.71 0.60 0.83 0.92 

Trend b2 0.24 -0.33 0.36 0.42 -0.22 -0.26 

Dewpt b3 0.25 0.16 0.17 0.16 0.11 

Rain b4 -1.65 -3.56 -2.85 -3.42 

CC b5 -0.59 0.43 0.35 

Windrose b6 2.23 1.91 1.18 0.78 

Hoi b7 6.03 27.02 23.41 31.45 16.57 

Sat b8 -1.75 -1.53 

Tmn_dep b9 0.14 

Traj b10 1.50 4.51 

OZ48 b11 6.99 6.79 

The nonlinear term was significant in each forecast model. It was a strong 

contributor for each forecast model with a t-value of 3.5 or more. Except the Covington 

model, the other six forecast models included the parameter Trend. The parameter Trend 

reflects the PM2.5 trend in the summer season after removing the meteorological influence 

on the PM2.6. The trend term had negative coefficients for Bowling Green, Owensboro, 

and Paducah models and had positive coefficients for the other models. These results 

were consistent with the summer PM2.5 trend study for selected metro areas in Kentucky 

(Section 6.1). The new parameter Windrose was used in four ofthe seven models. The 
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holiday parameter coefficient was more than 20.0 for the Lexington, Louisville, and 

Owensboro models. The parameter Traj and OZ48 was available only for the Lexington 

and Louisville models. These two parameters were statistically significant in both models. 

6.3.2 Model validation on calibration data set and independent data set 

The NLR PM2.5 forecast models for the seven metro areas were first validated on 

the calibration data set. The standard regression models had a Bias of zero. For Louisville 

model, applying hybrid technique slightly increased the Bias to 0.33 (Table 6.5). The 

MAE for the seven forecast models ranged from 4.84)lg/m3 (for Lexington) to 6.55)lg/m3 

(for Owensboro). The MAE was 24.4%-28.9% of the corresponding average PM2.5 

concentrations for each metro area. On average, the forecast models for the seven metro 

areas explained about 45% of the variation in PM2.5 concentrations, based on the 

correlation coefficient R2 of the multiple linear regression. The Louisville and Lexington 

models had R2 values of 0.54 and 0.48 respectively. This was higher than those of the 

other models, probably because these models included the Traj and OZ48 parameters. 

The performance of the PM2.5 forecast models, characterized by MAE and R2 of the 

model fit, was generally lower than that of the ozone forecast model. This was true also 

for each metro area. A probable explanation for this fact is that the PM2.5 has a longer 

atmospheric residence time than ozone. Current meteorological conditions are related to 

local and regional transport and dispersion of pollutants and pollutant precursors, and 

also the formation of secondary pollutant. Ambient PM2.5, in contrast to ambient ozone, 

consists of particles that have been airborne for extended times, up to two weeks. The 

amounts of these aged particles have little to do with recent atmospheric conditions. 
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Table 6.5 Statistics of the Model Fit for the Seven NLR PM2.5 Models (1999-2003) 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ug/m3
) 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.05 

MAE (ug/m3
) 6.43 4.78 6.41 4.84 6.45 6.55 4.99 6.18 

RMSE (ug/m3
) 6.87 6.12 7.19 6.11 7.24 7.39 6.41 6.76 

NMAE (%) 26.1% 27.0% 26.5% 24.6% 24.4% 27.1% 28.9% 26.2% 

[PM2.51avg 20.4 17.7 21.2 19.7 22.0 20.5 17.3 19.80 

R2 0.42 0.37 0.46 0.48 0.54 0.46 0.40 0.45 

Count 237 238 669 245 760 254 215 

The unhealthy limit ofNAAQS for daily average PM2.5 concentrations is 40 

~g/m3 (unhealthy for sensitive groups). In the calibration period 1999-2003, there were 

23 "unhealthy" days recorded in Louisville. Due to the small databases for the other 

metro areas, there were few unhealthy days in the calibration period for each area 

(typically less than 10 days out of215-245 possible days). To make the critical 

performance indexes (DR, FAR, and CSI) statistically significant, the forecast skill of the 

PM2.5 forecast model was evaluated with only the Louisville data. When the alarm 

threshold was set at the NAAQS unhealthy limit 40~glm3, the Louisville PM2.5 forecast 

model detected 12 of the 23 unhealthy days. The detection rate was 0.52. This value of 

DR was comparable to that of the ozone forecast model. However, this PM2.5 forecast 

model issued 32 false alarms, resulting in a high false alarm rate of 0.73 and a low critical 

success index of 0.22. Using an alarm threshold slightly lower than the NAAQS 

unhealthy limit would increase the forecast skill of the model. With the alarm threshold 

of38~glm3, the detection rate was 0.57, the false alarm rate was 0.65, and the critical 

success index was 0.29. 
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The sample scatter plot of the model fits versus the observed PM2.5 concentrations 

for Louisville illustrates the correspondence between model fits and observations (Figure 

6.10). Scatter plots for the other models had a similar pattern. 
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Figure 6.10 Scatter plot of model estimates against observed PM2.5 concentrations for the 
Louisville model. The diagonal indicates the line of perfect agreement. 

To test the seven PM2.5 forecast models with an independent data set, we used the 

forecast models for the seven metro areas to predict the daily PM2.5 concentrations of the 

2004 summer season, using the observed meteorological data as model inputs. The error 

statistics of the model hindcasts for each forecast model were slightly higher than those 

of the model fit (Table 6.6). The average MAE of the seven model hindcasts was 

6.43Ilg/m3, compared to 6.181lg/m3 for the model fits. The average RMSE of the model 

hindcasts was 6.46Ilglm3. This value was actually lower than the average RMSE of the 
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model fits (6.761lg/m3). This is because RMSE gives a relatively high weight to large 

errors. The average MAE and RMSE of the model hindcasts was 31.7% and 38.4% of the 

2004 average PM2.5 concentrations of the seven metro areas. It so happened that for 2004 

the model hindcast biases for each metro area were positive, ranging from 0.57Ilg/m3 

(Bowling Green) to 4.48Ilg/m3 (Louisville). It is usual for the bias to be non-zero for a 

test data set, due to year-to-year variability in climate and pollutant transport. The PM2.5 

concentrations during the 2004 ozone season (16.9Ilg/m3) were significantly lower than 

the average of the previous five year average (19.8Ilg/m3). Part of the variations of the 

PM2.5 concentrations is due to factors not explained by the forecast models. Year-to-year 

variability in these unknown factors can produce either positive or negative bias. 

Table 6.6 Statistics of the Model Hindcasts for Seven NLR PM2.5 Models (2004) 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ug/m3) 2.68 0.57 1.52 2.23 4.48 2.61 1.13 2.17 

MAE (ug/m3) 6.59 6.03 6.40 4.63 6.87 6.48 6.40 6.43 

RMSE (ug/m3) 6.74 6.14 6.86 6.65 7.19 6.37 6.24 6.46 

NMAE (%) 30.5% 32.0% 29.1% 27.2% 33.2% 33.2% 37.1% 31.7% 

[PM2.51avg 18.3 16.7 18.6 17.0 17.7 16.5 14.3 16.9 

R2 0.51 0.26 0.34 0.51 0.97 0.68 0.43 0.53 

Count 51 50 51 51 153 51 44 

The time series plot of model hindcasts and observed PM2.5 for Louisville during 

2004 was a typical pattern that reflects the performance of the PM2.5 forecast model 

(Figure 6.11). The model hindcasts tracked the PM2.5 variation reasonably well. 
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Figure 6.11 Time series of hind casts during the 2004 summer season, for Louisville 
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6.4 Winter PM2.5 Forecast Models 

Nonlinear regression winter PM2.5 forecast models were developed for the seven 

selected metro areas in Kentucky. The databases for winter models consisted of the air 

quality data and meteorological data during January, February, March, November and 

December, over the five year period 2000-2004. The PM2.5 monitors in Louisville areas 

provided PM2.5 observation data for each day. The Louisville database contained 

complete data for 748 days. In the Covington area, winter PM2.5 data were available for 

each day during the period 2000-2003, but available for every three days in 2004. So the 

Covington database had complete data for 576 days. The effective number of days for the 

other areas ranged from 231 (Paducah) to 254 (Owensboro). For each of the seven areas, 

the operational winter PM2.5 forecast model was the standard model fitted to the complete 

database. Application of the hybrid model technique did not improve performance for 

any of the winter models, so only the standard NLR models were developed. 

6.4.1 Model development 

The model building approach for the winter models was same as for the summer 

models. In the first step, a nonlinear term was developed considering the nonlinear 

function relating PM2.5 to maximum temperature, wind speed, and relative humidity. The 

final form of the interactive nonlinear function that best fitted the winter PM2.5 data was 

slightly different from that for the summer PM2.5 model. It was the combination of a third 

order polynomial function for maximum temperature, and power functions for both wind 

speed and relative humidity: 

Nonlin = (a 1 + azT max+ a3T max2 + a4T max3 )(WS aj 
)( RH a

6 ) (6.3) 
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The area specific coefficients a] to a5 were determined through separate fitting process 

for each metro area (Table 6.7). 

Table 6.7 Nonlinear Coefficients for Seven Winter PM2.5 Models 

Coefficient ASH BWG CVG LEX LOU OWE PAH 

a1 0.937 -6.641 4.734 7.793 -1.185 -0.443 -7.369 

a2 2.876 0.968 0.683 1.954 0.991 0.550 1.206 

a3 -0.072 -0.021 -0.172 -0.055 -0.024 -0.014 -0.027 

a4 0.00058 0.00015 0.00015 0.00046 0.00018 0.00010 0.00019 

as -0.363 -0.160 -0.327 -0.215 -0.278 -0.276 -0.260 

a6 -0.083 0.201 0.218 0.017 0.214 0.371 0.188 

In the second step, a multiple linear regression was fitted to include the linear 

term in the model. Both the stepwise regression method and physical reasoning based on 

previous model developing experience were applied to determine the parameters used in 

the models. In the final PM2.5 model, each of the predictor variables selected for the 

multiple linear regression was statistically significant, with a t-statistic greater than or 

close to 2.0 in absolute value. The final equation for the forecast model, consisted of an 

intercept and a group of up to eleven explanatory variables, 

PM2.5 = bo + bJNonlin + b2Trend + b3T min+ b4 Dewpt + bsRain 

+ b6 Xmitt + b7Tmn _ dep + bgCC + b9Windrose + blORhx + bllFri 
(6.4) 

For each model, terms that were not statistically significant were dropped. The 

input variables and their coefficients were unique for each PM2.5 forecast model (Table 

6.8). As expectation, the nonlinear term was the strongest contributor for each model with 

the t-value ranged from 4.3 (Covington) to 14.8 (Louisville). The trend term was 

statistically significant in each linear regression, with negative coefficients ranging from 
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-0.68 ppb/yr (Paducah) to -1.22 ppb/yr (Covington). This indicated that the winter PM2.5 

concentrations in those areas gradually declined during the period 1999-2003. The 

parameter Rain was included in each model, showing that precipitation tended to reduce 

the PM2.5 concentrations in cold weather conditions. Minimum temperature and dew 

point were important winter PM2.5 predictors for each forecast model. 

Table 6.8 Model Coefficients for the Winter PM2.5 Models 

Variable Coef. ASH BWG CVG LEX LOU OWE PAH 

Intercept bO 9.09 -7.17 18.09 6.12 6.54 -0.59 -8.94 

Nonlin b1 0.89 1.11 0.60 0.98 0.93 0.84 0.97 

Trend b3 -0.89 -0.72 -1.22 -1.10 -0.86 -0.83 -0.68 

Tmin b2 -0.47 -0.33 -0.57 -0.36 -0.60 -0.56 -0.41 

Dewpt b4 0.41 0.27 0.45 0.34 0.42 0.30 0.24 

Rain b5 -2.38 -4.27 -6.07 -4.11 -4.21 -3.59 -6.58 

Xmitt b6 16.37 11.46 22.96 28.74 

Tmn_dep b7 0.16 0.17 0.25 0.16 

CC b8 0.29 0.26 0.16 

Windrose b9 2.31 1.93 1.56 1.67 

RHx b10 -0.05 -0.06 -0.07 -0.07 

Fri b11 1.33 0.93 

6.4.2 Model validation on the calibration data set 

Performance of the final PM2.5 forecast models on calibration data set was 

evaluated by comparing the model estimates with the observed ozone concentration 

within the calibration periods. For each of the PM2.5 models, the bias of the model 

estimates was about zero. The MAE for the seven forecast models ranged from 3.23 

Jlg/m3 (Paducah) to 4.61 Jlg/m3 (Covington). The MAE was 26.7%-27.9% of the 
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corresponding average PM2.5 concentrations for each metro area. The correlation 

coefficients R2 for the PM2.5 models ranged from 0.31 (Bowling Green and Lexington) to 

0.46 (Ashland). On average, the winter PM2.5 forecast models for the seven metro areas 

explained about 37% of the variation in PM2.5 concentrations, based on the correlation 

coefficient of the multiple linear regression. 

The MAEs of the winter PM2.5 models were lower than those of the summer 

models, due to the seasonal average PM2.5 concentrations in winter were much less than 

the seasonal average PM2.5 concentrations in summer. For example, the overall average 

MAE of the model estimates was 3.90 llg/m3 for the seven winter models and was 6.18 

Ilg/m3 for the summer models. The overall average observed PM2.5 concentrations for the 

seven areas was 14.5 Ilg/m3 for the winter period and 19.8 Ilg/m3 for the summer period. 

Generally, the performance of the winter PM2.5 forecast models were inferior to that of 

the summer forecast models. Comparing to the summer models, the winter models had 

lower correlation coefficients (0.37 vs. 0.45 on overall average) and higher value of 

NMAE (26.8% vs. 26.2% on overall average). A probable explanation for this fact is that 

the primary PM2.5 pollutants were dominant in the winter time. Meteorological 

parameters mostly influence secondary PM2.5 that is formed by photochemical reactions. 
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Table 6.9 Statistics of the Model Fit for the NLR Winter PM2.5 Models (2000-2004) 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ug/m3) -0.005 0.001 0.001 -0.003 0.002 -0.001 -0.002 -0.001 

MAE (ug/m3) 3.85 3.40 4.61 4.14 4.08 3.99 3.23 3.90 

RMSE (ug/m3) 4.99 4.56 6.06 6.54 6.42 6.73 4.32 6.33 

NMAE (%) 26.7% 27.1% 26.9% 27.9% 26.7% 26.5% 26.9% 26.8% 

[PM2.51avg 16.0 12.6 17.1 14.8 16.4 16.0 12.0 14.5 

R2 0.46 0.31 0.40 0.31 0.40 0.32 0.36 0.37 

Count 253 244 576 246 748 254 231 

The sample scatter plot of the model fits versus the observed PM2.5 concentrations 

for Louisville illustrates the correspondence between model fits and observations (Figure 

6.12). 
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Figure 6.12 Scatter plot of model estimates against observed PM2.5 concentrations for 
Louisville model (Louisville, 2000-2004). The diagonal indicates the perfect 
correspondence line. 
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The scatter plot of the residuals versus model estimated PM2.5 demonstrated that the 

residuals have constant variance over the range of predicted PM2.5 concentrations (Figure 

6.13). Scatter plots for the other models a the similar pattern. 
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Figure 6.13 Residuals of the model estimates (winter model) versus the predicted PM2.5 

concentrations (Louisville, November-March, 2000-2004). 

An example of time series plots of observed PM2.5 concentrations versus 

predicted PM2.5 concentrations for Louisville demonstrated the pattern of the winter 

PM2.5 forecast model to track the variation ofPM2.5 concentrations (Figure 6.14). Most of 

the predicted PM2.5 concentrations were close to the corresponding observed values 

(within 3.0Ilg/m\ On a few days there were comparatively large errors, including over-

predictings (February 4 and 16) and under-predictings (February 1, 6, 14, and 27). 
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Figure 6.14 Time series of model estimates during the February 2004, Louisville 

Due to the weather conditions in winter time, there were few days that exceeded 

the unhealthy limit ofNAAQS (40 llg/m3) during the winter calibration period 2000-

2004 for each area. For example, there were 7 days out of748 days for Louisville and 6 

days out of 576 days for Covington. The indexes the DR, FAR, and CSI were not 

statistically significant. Therefore these model performance metrics were not applied to 

evaluate the winter PM2.5 forecast models. 
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6.5 Fuzzy System PM2.5 Summer Forecast Models 

6.5.1 Model development 

With the goal of developing more accurate PM2.5 forecast models, NLR-Fuzzy 

system models were developed for the seven metro areas: Ashland, Owensboro, Bowling 

Green, Covington, Lexington, Louisville, and Paducah. The fuzzy system models were 

Takagi-Sugeno fuzzy models as described in Chapter IV, 6.4. The nonlinear term defined 

by Equation 6.1 was included in the fuzzy system models. Development of the NLR 

PM2.5 forecast models prepared a group of input variables that were statistically 

correlated with local PM2.5 at the 95% confidence level (Table 6.10). These input 

variables were also used in the NLR-Fuzzy fuzzy system models. 

Table 6.10 Input Variables for Seven Metro Area NLR -fuzzy Summer PM2.5 Models 

Variables ASH BWG CVG LEX LOU OWE PAH 

X1 Nonlin Nonlin Nonlin Nonlin Nonlin Nonlin Nonlin 

X2 Trend Trend Dewpt Trend Trend Trend Trend 

X3 Dewpt CC Rain Dewpt Dewpt Dewpt Windrose 

X4 Rain CC Rain Rain Windrose Hoi 

Xs CC Wind rose Hoi Windrose Hoi 

X6 Hoi Traj Hoi 

X7 Sat OZ48 Sat 

Xs Tmn_dep 

Xg Traj 

X10 OZ48 

Count 5 3 7 7 10 5 4 

The training data pairs (M) for the seven metro areas ranged from 215 (Paducah) 

to 760 (Louisville). Selection of the number of rules (R) and the fuzziness factor (m) was 

referred to the "R and m study" for the ozone fuzzy system models, based on the fact that 
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the summer PM2.5 concentrations are correlated to 03 concentrations. The value of 5 for 

both Rand m was used for the seven fuzzy system models. The error tolerance Gc used 

for finding the cluster center Vi was chosen as 0.01. In summary, the pre-designed 

parameters were the same for each of the seven models, as follow, 

• R = 5 , number of rules 

• m = 5, fuzziness factor 

• Gc = 0.01, error tolerance 

The Takagi-Sugeno fuzzy models were developed with fuzzy clustering 

accompanied with the weighted least square method, as described in Chapter V. First, the 

initial cluster centers v~ were chosen so that the initial cluster centers were evenly 

distributed within the data range. As an example, the following table shows the initial 

cluster centers v~ for the Ashland model (Table 6.11). 

Table 6.11 Initial Cluster Centers v~ for NLR-fuzzy Summer PM2.5 Model (Ashland) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule4 Rule 5 
Center 

Nonlin vo1 9.68 16.45 23.22 29.99 36.76 

Trend vo2 0.40 1.20 2.00 2.80 3.60 

Dewpt vo3 41.96 50.16 58.36 66.56 74.76 

Rain vo· 2.21 1.72 1.23 0.74 0.25 

CC vos 8.60 6.80 6.00 3.20 1.40 

Equation 4.14 - 4.18 were applied to realize the iterative process for finding cluster 

centers Vi , and Equation 4.19 - 4.22 were applied to find the coefficients a i of the fuzzy 

consequence. The final fuzzy system models were characterized by a group of cluster 
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centers Vi and coefficients a i for each of the rules. The cluster centers and coefficients 

were unique for each model. As an example, the parameters for the Ashland NLR-fuzzy 

system model are listed in the following Table 6.12 and Table 6.13. Model parameters for 

other metro areas refer to Appendix D. 

Table 6.12 Final Cluster centers v f i for NLR-fuzzy Summer PM2.5 Model (Ashland) 

Variables Cluster 
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Center 

Nonlin V1
i 12.26 16.54 23.90 17.14 28.00 

Trend V2
i 1.63 1.77 1.81 2.18 2.56 

Dewpt V3i 40.98 53.12 61.61 69.05 72.95 

Rain V4
i 0.01 0.03 0.03 0.42 0.07 

CC VSi 1.72 1.76 1.26 6.89 2.13 

Table 6.13 Coefficients a i for NLR-fuzzy Summer PM2.5 Model (Ashland) 

Variables Coef. Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 

Intercept ao -1.78 -14.46 2.86 -4.98 -30.38 

Nonlin a1 0.68 0.30 0.59 0.21 0.84 

Trend a2 0.57 -0.24 -0.41 -0.20 -0.13 

Dewpt a3 0.06 0.50 0.14 0.35 0.61 

Rain a4 -1.33 -6.51 -4.36 -1.78 0.98 

CC as 0.27 -0.07 -0.59 -0.62 -2.66 

6.5.2 Model evaluation 

With the parameters determined above, the fuzzy system model output can be 

computed using Equation 5.19 - 5.22. The flow chart in Figure 5.13 illustrates the 

algorithm of a Takagi-Sugeno fuzzy system. The NLR-Fuzzy system models were first 
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evaluated on the calibration data set. For the model fit statistics (Table 6.14), the Bias of 

most model fits were negative but close to zero. The MAE of the model fit ranged from 

4.58~g/m3 (Lexington) to 6.41~g/m3 (Owensboro). The RMSE ranged from 6.84~g/m3 

(Lexington) to 7.24~g/m3 (Owensboro). The Louisville and Lexington models had 

slightly better performance than the other models. For example, the NMAEs of the 

Louisville and Lexington model fits were 23.7% and 23.3% respectively, compared to the 

average NMAE 26.4%. The R2 values of 0.55 and 0.52 for the Louisville and Lexington 

models were slightly above the average of 0.47. This is possibly because the transport 

parameters Traj and OZ 48 were applied in Louisville and Lexington models. 

Table 6.14 Statistics of Model Fit for NLR-fuzzy Summer PM2.5 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ug/m 3
) -0.38 -0.06 -0.23 -0.24 0.00 -0.12 -0.03 -0.15 

MAE (ug/m 3
) 6.07 4.70 6.41 4.58 6.32 6.41 4.85 6.02 

RMSE (ug/m 3
) 6.46 6.07 7.08 6.84 7.05 7.24 6.24 6.57 

MAE% 24.9% 26.5% 26.1% 23.3% 23.7% 26.4% 28.1% 26.4% 

[PM2.51avg 20.4 17.7 21.2 19.7 22.0 20.5 17.3 19.81 

R2 0.48 0.38 0.47 0.52 0.55 0.47 0.41 0.47 

Count 237 238 235 245 760 254 215 

The seven NLR -Fuzzy system PM2.5 forecast models were also evaluated on the 

2004 observed data set. The model hindcast performance statistics were close to the those 

of model fits (Table 6.15). The average Bias of the seven model hindcasts was 

l.59~g/m3. Except for the Ashland model and Owensboro model, the MAEs of the other 

five model hindcasts were slightly higher than those of the model fits. The average MAE 

of the model hindcasts was 6.19~g/m3, which was 31.0% of the overall average PM2.5 
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concentrations of the seven metro areas. The average RMSE of the model hindcasts was 

6.33Ilg/m3. An example of the time series plot of model hindcasts and observed PM2.5 for 

Louisville showed performance of the NLR-Fuzzy PM2.5 summer forecast model during 

May 2004 (Figure 6.15). 

Table 6.15 Statistics of the 2004 Model Hindcasts for NLR-fuzzy PM2.5 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

Bias (ug/m 3
) 0.43 0.83 1.31 0.89 4.23 1.74 1.71 1.59 

MAE (ug/m 3
) 4.99 4.96 6.48 4.79 6.85 4.91 6.46 6.19 

RMSE (ug/m 3
) 6.09 6.13 7.15 6.67 7.05 6.89 6.36 6.33 

MAE% 27.2% 31.5% 29.0% 28.1% 33.1% 29.7% 38.1% 31.0% 

[PM2.51avg 18.3 16.7 18.6 17.0 17.7 16.5 14.3 

R2 0.28 0.25 0.47 0.30 0.95 0.55 0.44 

Count 51 50 51 51 153 51 44 

30 I Louisville MSA, model hindcast for May 2004 
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Figure 6.15 Time series of hind casts during the 2004 summer season, Louisville 

123 



6.5.3 Comparison ofNLR-Fuzzy system models and NLR models 

The NLR-Fuzzy system and NLR PM2.5 forecast models were developed for the 

seven metro areas based on the same databases and using the same input variables. The 

NLR-Fuzzy system models were compared with the NLR models by comparing the 

performance of these two type models on both the model fits and model hindcasts. 

The model fit statistics of the NLR-Fuzzy system models was slightly better than 

those of the corresponding NLR forecast models (Table 6.16). For example, the MAE, 

RMSE, and R2 for the Lexington NLR model fit were 4.84Ilg/m3, 6.l1Ilg/m3, and 0.48 

respectively. By applying fuzzy technique, the MAE and RMSE ofNLR-Fuzzy system 

model decreased to 4.58Ilg/m3 and 6. 841lg/m3 respectively. The R2 was improved to 0.52. 

The model fit statistics of the NLR-Fuzzy system models achieved improvement for each 

metro area. On average, the MAE of the seven NLR-Fuzzy system models was 

6.02Ilg/m3, which was about 3% less than that of the NLR models (6.l8Ilg/m3). The 

average RSME and R2 of the seven NLR-Fuzzy system models were less than those of 

the NLR models at the same magnitude. 

Table 6.16 Comparison of Model Fit Statistics between Two Type PM2.5 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

NLR PM2.5 forecast models 

Bias (ug/m3
) 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.05 

MAE (ug/m3
) 6.43 4.78 6.41 4.84 6.45 6.55 4.99 6.18 

RMSE (ug/m 3
) 6.87 6.12 7.19 6.11 7.24 7.39 6.41 6.76 

NLR-Fuzzy PM2.5 forecast models 

Bias (ug/m 3
) -0.38 -0.06 -0.23 -0.24 0.00 -0.12 -0.03 -0.15 

MAE (ug/m 3
) 6.07 4.70 6.41 4.58 6.32 6.41 4.85 6.02 

RMSE (ug/m 3
) 6.46 6.07 7.08 6.84 7.05 7.24 6.24 6.57 
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For the model hindcasts on 2004 summer season, the NLR-Fuzzy models also had 

better performance statistics than those of the NLR models. Except for the hindcasts of 

the Lexington and Paducah models, the NLR-Fuzzy models had lower MAEs than those 

of the NLR models. The average MAE of the NLR-fuzzy model hindcasts for the seven 

metro areas was 6.19Ilg/m3, which was ~3% less than that for the NLR model hindcasts. 

The average Bias and RMSE of the seven NLR-Fuzzy models were also less than the 

corresponding values of the NLR models (Table 6.17). 

Table 6.17 Comparison of 2004 Model Hindcasts between Two Type PM2.5 Models 

Statistic ASH BWG CVG LEX LOU OWE PAH Average 

NLR PM2.5 forecast models 

Bias (ug/m 3
) 2.68 0.57 1.52 2.23 4.48 2.61 1.13 2.17 

MAE (ug/m 3
) 6.59 6.03 6.40 4.63 6.87 6.48 6.40 6.43 

RMSE (ug/m 3
) 6.74 6.14 6.86 6.65 7.19 6.37 6.24 6.46 

NLR-Fuzzy PM2.5 forecast models 

Bias (ug/m3
) 0.43 0.83 1.31 0.89 4.23 1.74 1.71 1.59 

MAE (ug/m 3
) 4.99 4.96 6.48 4.79 6.85 4.91 6.46 6.19 

RMSE (ug/m 3
) 6.09 6.13 7.15 6.67 7.05 6.89 6.36 6.33 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The NLR ozone forecast models have been successfully applied to daily ozone 

forecasts for the metro areas Ashland, Bowling Green, Lexington, Louisville, Owensboro, 

and Paducah. In the year 2003, one more NLR ozone forecast model for the Cincinnatti­

Covington metro statistical area (MSA) was developed and applied. The operational 0 3 

NLR forecast models were hybrid models. The input variables for each of the models 

were mostly the same, including a group of meteorological parameters and derived ozone 

predictor parameters. A nonlinear term was obtained in a nonlinear regression fitting 

process and was used as one of the parameters in the multiple linear regression. It was the 

most significant term for each of ozone forecast models. 

In this study, the updated 2005 NLR ozone forecast models for these metro areas 

were evaluated on calibration data sets and independent data sets. The metro area MAEs 

for the 2000-2004 model fits varied from 5.57 ppb to 7.32 ppb (~ 11-12% NMAE). The 

metro area MAEs for the 2005 model hindcasts varied from 5.90 ppb to 7.20 ppb (~ 10-

13% NMAE) and the metro area MAEs for the 2005 model forecasts varied from 7.90 

ppb to 9.80 ppb (~ 13-17% NMAE). This level of performance was comparable or 

superior to other ozone forecast models reported in the literature (the range of reported 

NMAEs is 12% to 30%). 
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Based on previously developed NLR ozone forecast models for those areas, 

Takagi-Sugeno fuzzy system models were developed for seven metro areas in Kentucky, 

using the fuzzy "c-means" clustering techniqm: coupled with the least square method. 

The key parameters for a Takagi-Sugeno model were the number ofmles (R) and the 

fuzziness factor (m). The combination ofR=5 and m=5 was used in the fuzzy system 

models, based on a sensitivity study using Louisville air quality and meteorological data. 

Two types of fuzzy models, basic fuzzy models and NLR-fuzzy models were developed. 

The basic fuzzy and NLR-fuzzy models exhibited essentially equivalent performance to 

the existing NLR models on 2004 ozone season hindcasts and forecasts. Both types of 

fuzzy models had, on average, slightly lower metro area averaged MAEs than the NLR 

models. For the model hindcasts, the average MAEs of the seven areas were 7.4 ppb, 7.6 

ppb, and 7.7 ppb for NLR-fuzzy, basic-fuzzy, and NLR models respectively. For the 

model forecasts, the average MAEs were 7.8 ppb, 8.0 ppb, and 8.1 ppb for NLR-fuzzy, 

basic-fuzzy, and NLR models. The small differences may have been statistically 

significant, but for practical purposes, the models performed essentially the same. 

Therefore, the choice of which of these models to use for application in ozone air quality 

forecasting should probably be based on other factors, for example experience of the 

modeler and software availability. 

Among the seven Kentucky metro areas Ashland, Covington, and Louisville are 

currently designated non attainment areas for both ground level 0 3 and PM2.5. In this 

study, summer PM2.5 forecast models were developed for providing summertime daily 

average PM2.5 forecasts for the seven metro areas. The performance of the PM2.5 forecast 

models was generally not as good as that of the ozone forecast models. For example, the 
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summer 2004 model hindcasts had the metro-aJrea average MAE of 5.3 31lg/m3 (31.7% 

NMAE). The PM2,5 has a longer atmospheric residence time than ozone and the local 

meteorological parameters have less influence IOn local PM2,5 concentrations. Therefore, 

the lower accuracy ofPM2,5 forecast models compared to ozone forecast models was 

expected. 

High PM2,5 concentrations were mostly observed in the summer. However, PM2.5 

concentrations reach another peak during winter. In this study, exploratory research was 

conducted to find the relationship between the winter PM2,5 concentrations and the 

meteorological parameters and other derived prediction parameters. Winter PM2,5 

forecast models were developed for seven selected metro areas in Kentucky. For the 

model fits, the MAE for the seven forecast models ranged from 3.23 llg/m3 to 4.61 Ilg/m3. 

The winter NLR PM2,5 forecast models for those Kentucky metro areas had slightly 

higher prediction errors than the respective summer models. For example, the NMAE of 

the model fits for the winter models ranged from 26% - 28%, compared to 24% - 29% for 

the summer model. A probable explanation for this fact is that the primary PM2.5 

pollutants were dominant in the winter time. Meteorological parameters mostly influence 

secondary PM2,5 that is formed by photochemical reactions. 

The fuzzy technique was applied on PM2,5 forecast models to seek more accurate 

PM2,5 prediction. NLR-fuzzy system summer PM2,5 models were developed for the seven 

metro areas. The NLR-fuzzy PM2,5 forecast models had the metro area average MAE 3% 

less than that of the NLR PM2,5 forecast models, for both the model fits and 2004 summer 

season model hindcasts. 
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Appendix A. Computer Program Codes 

1. Computer program used for training fuzzy system models. 

%************************************~****************************** 

%This code used to determine a T-S fuzzy model, with clustering method 
%and optimal output predefuzzification 
%************************************~'*************** *************** 

clear alIi 
close alIi 

%-----load training input and output data-------­
load c:\data\o3.txti 
load c:\data\nonlin.txti 
load c:\data\xmitt.txti 
load c:\data\oz48.txti 
load c:\data\traj.txti 
load c:\data\trend.txti 
load c:\data\RHx.txti 
load c:\data\tmndep.txti 
load c:\data\ts.txti 

%overall input data 
x=transpose([nonlin xmitt oz48 traj trend RHx tmndep ts]) i 

%overall output data 
y=transpose(03) i 

%------------------------------------------------

%-----design parameters-----
[N,M]=size(x) i %get "N", number of input parameters 

%get "M", number of input-output data pairs 
ac=O. 001 i %set allowed errOl::- when calculating cluster centers 

% R=input ('Training Lex. 2004 model, Choose R: ') i 

% %number of clusters, specified by designer 
') i % m=input('Choose m: 

% %fuzzy factor, overlap of the clusters 

RO= [1 3 5 10 15 20 25 30] i 

mO= [1.5 2 3 4 5 6] i 

for ccR=1:8 
for ccm=1:6 

R=RO(ccR) im=mO(ccm) i 
%----------------------------

%train model in group 

%******************************************************************** 
%The following code used to clustering the training data set 
%******************************************************************** 
%-----setting initial cluster centers, evenly select centers for each 
%-----of the parameters 
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%First determine the linear coefficients for each parameter with 
%LS method. Aim to find the parameters are "+" or "_" correlated 
%with ozone concentrations 

fi=transpose([ones(l,M) i 

yi=transpose(y) i 

bi=(fi'*fi)A-1*fi'*yii 
% 

xl) i %input data 
%output data 
%coefficients 

% %Then construct the initial cluster centers 
% 
for ccl=l:N 

pmax=max(x(ccl, :)) i pmin=min(x(cc1, :)) i 

dist=(pmax-pmin)/Ri 
if bi (ccl+l, :) >0 

else 

end 
end 
Vold=vOi 

VO(ccl,1)=pmin+dist/2i 
for cc2=2:R 

VO(ccl,cc2)=VO(ccl,cc2-1)+disti 
end 

VO(ccl,1)=pmax-dist/2i 
for cc2=2:R 

VO(ccl,cc2)=VO(ccl,cC2-1)-disti 
end 

%max. value for the para. 
%distance between ini. CC 

%if coefficient of the 
%parameter greater than 0, 

%then the cluster centers 
%from min to max 

%if less than 0, from max 
%to min 

%-----End of setting initial cluster centers---

%-----Then find the final cluster centers----­
CCC=li 
for cc3=1:2000 

%step 1. find Unew(i,j) for each input training data 
for i=l:M 

for j=l:R 
uden=Oi 
for k=l:R 

uden=uden+ (norm (x ( : , i) -Vo:_d ( : , j) ) ) A2 / (norm (x ( : , i) -
VoId (: , k) ) ) A2 i 

end 
Unew(i,j)=l/udeni 

end 
end 

%step 2. calculate new cluster center 
for j=l:R 

numl=O i 
denl=Oi 
for i=l:M 

numl=numl+x(:,i)*Unew(i,j)Ami 
denl=denl+Unew(i,j) Ami 

end 

end 
vnew(:,j)=numl/den1i 

%step 3. calculate distance between new and old cluster center 
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%if the distence is greater than 'ac', then 'esum' count 1 
%when esum is zero, terminate loo~ 

esum=Oi 
for j=l:R 

e(j)=norm(Vnew(:,j)-Vold(:,j)) i 

if e(j)<ac 

end 

CC3=Oi 
else 

cc3=li 
end 
esum=esum+cc3i 

if esum==O 
break 

else 

end 

Vold=Vnewi 
ccc=CCC+1i 

%-------------------------
end 

V=Vnewi %save the new cluster centers 

%************************************~.**************************** 

%the following code used to determine the parameters aj 
%with least square method 
%************************************~.**************************** 

%-------calculate membership function UH for each input data----­
for i=l:M 

for j=l:R 
den=Oi 
for k=l:R 

den=den+norm(x(:,i)-V(:,j))A 2!norm(x(:,i)-V(:,k))A2i 

end 
end 

end 
UH(i,j)=l!den i 

%----------------------

Mone=ones (1, M) i 

Xhead=transpose([Moneix]) i 

y=transpose (y) i 

%creat matrix X head 

%creat matrix Y 

for j=l:R %calculate aj for each rule 
Dj =diag (UH ( : , j ) ) i 

aj (:,j)=pinv(transpose(Xhead)*DjA 2 *Xhead)*transpose(Xhead)*DjA 2 *Yi 
end 

%-----save the parameters in file----~--------------­
if m<2 
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parafile=strcat('parameterR',num2str(R), 'm' ,num2str(m*10)) i 

else 
parafile=strcat('parameterR' ,num2str(R), 'm',num2str(m)) i 

end 
save (paraf i le, 'M' , 'N' , 'R' , 'VO' , 'V' , 'Y' , 'ac' , 'aj , , 'bi ' , 'm' , '03 ' ) i 

%-----------------------

end 
end 

%end loop for m 
%end loop for R 

2. Computer program used for testing fuzzy system models. 

%************************************~***************************** 

%This code used to test the T-S fuzzy model with testing data set 
%************************************~***************************** 

clear alli 
close alli 

%-----parameter setting-----
NAAQS=80.0i %set NAAQS 
Threshold=75.0i %set test threshold 
%---------------------------

%-----load parameters of the T-S fuzzy model--­
R = input ('Testing model, Choose R: ,) i 

m = input (, Choose m: ,) i 

parafile=strcat ( 'parameterR' , num2str (R) , 'm' , num2str (m) ) i 

load (parafile) i 

%---------------------------

%-----load testing data set----­
load c:\data\03.txti 
load c:\data\nonlin.txti 
load c:\data\xmitt.txti 
load c:\data\oz48.txti 
load c:\data\traj.txti 
load c:\data\trend.txti 
load c:\data\RHx.txti 
load c:\data\tmndep.txti 
load c:\data\ts.txti 

%overall input data 
x=transpose ( [nonlin xmitt oz48 traj trend RHx tmndep tsJ) i 

%overall output data 
y=transpose(03) i 

[N, MJ =size (x) i %get "N", number of input parameters 
%get "M", number of input-output testing data pairs 
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%------------------------------

%-----test fuzzy model with training data set-----

for i=l:M 

for j=l:R %find values of the membership functions 
temp=Oi 
for k=l:R 

temp=temp+ (norm (x ( : , i) -v ( : , j) ) ) "2/ (norm (x ( : , i) -v ( : , k) ) ) "2 i 

end 

end 
UH(j)=l/tempi 

num=Oi %calculate output of fuzzy model 
den=Oi 
for j=l:R 

g=[l transpose(x(:,i))l*aj (:,j) i 

num=num+g*UH(j) i 

end 

den=den+UH(j) i 

end 
yt(i)=num/deni 

T(i)=ii 

%-----------------------

% %-----time series plots----­
% pn=lOOi 
% plot(T(l:pn) ,y(l:pn) ,T(l:pn) ,yt(l:pn), 'r') i 

% xlabel ( , number of day'), ylabel ( , model pred. and observation (ppb) , ) i 
% gridi 
% %----------

%-----statistics calculations-----

%bias, MAE, Rsquare : 
bias=Oi 
mae=Oi 
Rnum=Oi 
Rden=Oi 
avgY=norm(y,l)/Mi 
rmse=Oi 

for cc1=1:M 
error=yt(cc1)-y(cc1) i 

bias=bias+errori 
mae=mae+abs(error) i 

Rnum=Rnum+(yt(cc1)-avgy)"2i 
Rden=Rden+(y(cc1)-avgy)"2i 
rmse=rmse+error"2i 

end 

Bias=bias/Mi 
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MAE=mae/M; 
RMSE=sqrt(rmse/M) ; 
Rsquare=Rnum/Rden; 

%model performance parameter : 
DE=O; %number of detected exceedances 
EX=O; 
FA=O; 
AL=O; 

%number of observed exceedances 
%false alarms 
%total alarms 

for cc2=1:M 

end 

if y(cc2) >=NAAQS 
EX=EX+l; 

end 

if yt(cc2»=Threshold 
DE=DE+l; 

end 

if y(cc2)cThreshold 

end 

if yt(cc2»=Threshold 
FA=FA+l; 

end 

if yt(cc2»=Threshold 
AL=AL+l; 

end 

DR=DE/EX; %detection rate 
FAR=FA/AL; 
CSI=(AL-FA)/(AL+EX-DE) ; 

%false alarm rate 
%critical success index 

%------results output-----

sheetname=strcat('R',num2str(R)) ; %creat Excel filename 

%Testing data set and fuzzy model predictions 
tdataO={'03_obs', '03-pred'}; 
xlswrite('results.xls', tdataO, sheetname, 'Al'); 
xlswrite('results.xls', y', sheetname, 'A2'); 
xlswrite('results.xls', yt', sheetname,'B2'); 

%Fuzzy Model design parameters 
par={ 'R(rules)', 'm(overlap)', 'N(inputs)' 'M(datapair)' 'ac'; R m N M 

ac} , ; 
Std={'NAAQS', 'Threshold'; NAAQS Threshold}'; 
xlswrite('results.xls', par, sheetnane, 'd2'); 
xlswrite('results.xls', Std, sheetnane, 'dB'); 

%Error statistics 
SerrorO = {'Error_statistics'}; 
Serror = {'03_avg', 'Rsquare', 'Bias', 'MAE', 'RMSE'; avgY Rsquare Bias MAE 
RMSE} , ; 
xlswrite('results.xls', SerrorO, sheetname, 'g2'); 
xlswrite('results.xls', Serror, sheetname, 'g4'); 
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%Performance statistics 
SperfO={'Performance_statistics'}; 
Sperf={'DR', 'FAR', 'CSI', 'DE', 'AL', 'FA', 'EX'; DR FAR CSI DE AL FA EX}'; 
xlswrite('resuIts.xls', SperfO, sheetname, 'j2'); 
xlswri te ( , resul ts . xIs', Sperf, sheetname,' j 4' ) ; 
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Appendix B. Parameters for Fuzzy System Ozone Forecast Models 

Table A.l Final cluster centers Vi for NLR-fuzzy system model (Ashland) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 
Center 

Nonlin V1
i 41.55 54.79 70.39 54.79 85.04 

Xmitt V2
i 0.64 0.64 0.65 0.64 0.65 

Trend V3i 2.58 2.19 2.29 1.69 0.86 

RH V4
i 92.40 72.07 60.76 43.92 40.98 

CC VSi 7.93 4.06 1.59 1.79 0.88 

WS V6
i 5.94 6.58 5.86 8.16 5.31 

Table A.2 Coefficients a i for NLR-fuzzy system model (Ashland) 

Variables Coefficient Rule 1 RulE! 2 Rule 3 Rule4 Rule 5 

Intercept ao -93.16 -134.20 -291.60 -260.61 -142.43 

Nonlin a1 0.45 0.57 0.77 0.73 0.71 

Xmitt a2 238.32 287.00 494.86 426.01 266.75 

Trend a3 -0.20 -0.79 -0.07 0.36 -0.10 

RH a4 -0.30 -0.2? -0.10 0.04 -0.08 

CC as -1.00 -0.69 -0.81 -0.74 -2.25 

WS a6 -0.73 -0.6:1 -0.69 0.28 0.19 

Table A.3 Final cluster centers Vi for basic-fuzzy system model (Ashland) 

Variables Cluster 
Rule 1 RulE! 2 Rule 3 Rule 4 Rule 5 

Center 

Tmax V1
i 73.23 78.92 83.80 88.01 80.88 

WS V2
i 5.25 5.27 6.41 6.10 6.45 

RHx V3i 84.82 70.26 59.29 48.06 36.64 

Xmitt V4
i 0.64 0.64 0.65 0.65 0.64 

Trend Vsi 2.71 2.14 2.03 2.12 0.81 

RH V6
i 93.67 79.21 65.73 51.08 35.99 

CC V7
i 

8.00 5.14 2.80 1.31 0.62 

Table AA Coefficients a i for basic-fuzzy system model (Ashland) 

Variables Coefficient Rule 1 Ruin 2 Rule 3 Rule4 Rule 5 

Intercept ao -44.34 -12:<:.78 -223.56 -236.79 -141.23 

Tmax a1 0.57 0.61 0.81 0.99 1.42 

RHx a2 0.08 -0.113 -0.26 -0.42 -0.43 

WS a3 -1.00 -0.713 -1.70 -1.94 -1.22 

Xmitt a4 137.91 265.88 410.88 422.69 199.30 

Trend as -0.97 -0.57 -0.45 0.83 -0.71 

RH a6 -0.44 -0.33 -0.25 -0.31 -0.15 

CC a7 -0.60 -0.75 -0.96 -0.78 1.07 
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Table A5 Final duster centers Vi for NLR-fuzzy system model (Bowling Green) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule4 Rule 5 
Center 

Nonlin V1
i 39.11 51.09 65.58 61.09 86.67 

Xmitt V2
i 0.65 0.65 0.65 0.65 0.64 

Trend V3
i 2.73 2.50 2.02 2.13 0.34 

RH V4
i 87.14 71.69 56.57 45.13 28.33 

Tmn_dep Vsi 3.07 4.31 3.52 -7.44 -2.85 

WS V6i 8.46 7.89 7.58 7.93 6.17 

Table A6 Coefficients a i for NLR-fuzzy system model (Bowling Green) 

Variables Coefficient Rule 1 RulE! 2 Rule 3 Rule4 Rule 5 

Intercept ao -193.57 -144.55 -141.95 -268.83 -197.06 

Nonlin al 0.55 0.51 0.65 0.78 0.96 

Xmitt a2 356.71 316.00 300.07 459.15 313.56 

Trend a3 -0.22 0.02 -0.16 -0.09 0.20 

RH a4 -0.20 -0.44 -0.45 -0.20 -0.05 

Tmn_dep as -0.01 -O.OB 0.06 0.31 0.71 

WS as -0.50 -0.72 -0.54 -0.22 0.47 

Table A 7 Final duster centers Vi for basic-fuzzy system model (Bowling Green) 

Variables Cluster Rule 1 RulE! 2 Rule 3 Rule 4 Rule 5 
Center 

Tmax V1
i 77.98 85.07 90.25 79.47 93.04 

WS V2
i 8.10 7.88 7.91 7.20 6.62 

RHx V3
i 80.68 67.90 53.95 41.71 35.73 

Xmitt V4
i 0.65 0.65 0.65 0.65 0.64 

Trend V5
i 2.61 2.51 2.02 2.29 0.27 

RH VSi 85.53 71.29 55.74 47.15 27.23 

Tmn_dep V7
i 4.64 4.87 3.76 -7.42 -3.95 

Table A8 Coefficients a i for basic-fuzzy system model (Bowling Green) 

Variables Coefficient Rule 1 Ruh~ 2 Rule 3 Rule4 Rule 5 

Intercept ao -165.73 -12~'.05 -114.82 -237.90 -208.53 

Tmax al 0.48 0.44 0.56 0.72 1.10 

WS a2 -0.80 -0.8 15 -0.94 -0.45 -0.46 

RHx a3 -0.18 -0.17 -0.52 -0.60 -1.01 

Xmitt a4 326.05 301.60 296.33 444.80 356.44 

Trend as -0.11 O.OEi -0.25 0.17 -0.23 

RH as -0.27 -0.55 -0.47 -0.25 0.14 

Tmn dep a7 -0.13 -0.25 0.13 0.47 0.85 
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Table A.9 Final cluster centers Vi for NLR-fuzzy system model (Covington) 

Variables Cluster Rule 1 Rule 2 Rule 3 Rule4 Rule 5 Center 

Nonlin V1
i 40.78 57.30 53.35 75.63 87.89 

Xmitt V2
i 0.64 0.64 0.64 0.65 0.64 

Trend V3i 2.26 2.05 1.98 1.79 1.12 

RHx V4
i 91.48 72.85 45.53 58.59 35.57 

Tmn_dep VSi 2.58 3.94 -7.06 2.46 -2.97 

Table A.l Q Coefficients a i for NLR-fuzzy system model (Covington) 

Variables Coefficient Rule 1 RuIE~ 2 Rule 3 Rule4 Rule 5 

Intercept ao -152.15 -140.59 -267.55 -368.36 -409.12 

Nonlin al 0.53 0.69 0.73 0.95 0.82 

Xmitt a2 311.40 285.13 453.66 587.97 684.97 

Trend a3 -0.39 0.30 0.43 0.66 1.34 

RHx a4 -0.32 -0.3!3 -0.13 -0.11 -0.38 

Tmn_dep as 0.08 0.06 0.37 -0.08 0.46 

Table A.ll Final cluster centers Vi for basic-fuzzy system model (Covington) 

Variables Cluster 
Rule 1 Rule:! Rule 3 Rule 4 Rule 5 

Center 

Tmax V/ 71.29 82.78 87.49 70.95 87.20 

WS V2
i 9.37 7.88 8.00 9.59 7.75 

RHx V3i 92.67 74.92 58.61 49.04 34.59 

Xmitt V4
i 0.64 0.64 0.65 0.64 0.64 

Trend VSi 2.44 2.12 1.88 2.26 1.27 

Tmn_dep V6i 2.56 4.12 3.13 -8.78 -2.68 

Table A.12 Coefficients a i for basic-fuzzy system model (Covington) 

Variables Coefficient Rule 1 Rule .2 Rule 3 Rule 4 Rule 5 

Intercept ao -135.52 -128.118 -377.70 -281.32 -314.42 

Tmax al 0.60 1.01 1.40 1.04 1.60 

WS a2 -0.11 -0.87 -1.75 -0.59 -1.59 

RHx a3 -0.48 -0.62 -0.39 -0.27 -0.40 

Xmitt a4 276.41 242.22 569.97 436.19 443.17 

Trend as -0.37 -0.07 0.17 0.62 0.17 

Tmn del2 a6 -0.11 -0.35 -0.36 0.05 0.25 
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Table A. 13 Final cluster centers Vi for NLR-fuzzy system model (Lexington) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule4 Rule S Center 

Nonlin V1
i 37.68 48.513 58.78 67.46 84.69 

Xmitt V2
i 0.64 0.65 0.65 0.65 0.64 

Trend V3i 2.15 2.32 2.07 1.63 1.28 

RH V4
i 88.55 72.30 58.45 42.87 32.20 

OZ48 VSi 0.09 0.10 0.09 0.29 0.47 

Traj V6' 0.14 0.23 0.23 0.28 0.49 

cc V/ 7.90 4.31 2.02 1.07 0.73 

Table A.14 Coefficients a i for NLR-·fuzzy system model (Lexington) 
Variables Coefficient Rule 1 RulE! 2 Rule 3 Rule 4 Rule S 

Intercept ao -83.85 -105.66 -179.73 -239.04 -226.34 

Nonlin a1 0.19 0.56 0.61 0.86 0.71 

Xmitt a2 218.65 229.11 331.70 391.46 400.36 

Trend a3 -0.62 -1.013 -0.92 -1.11 -0.72 

RH a4 -0.27 -0.213 -0.15 -0.09 -0.29 

OZ48 a5 6.22 6.67 7.94 10.18 8.91 

Traj a6 3.73 2.89 2.69 2.35 -2.05 

CC a7 -0.58 -0.413 -1.11 -0.18 0.44 

Table A.15 Final cluster centers Vi for basic-fuzzy system model (Lexington) 

Variables Cluster 
Rule 1 Rule 2 Rule 3 Rule 4 RuleS Center 

Tmax V1
i 75.93 82.83 87.75 76.77 89.51 

WS V2' 8.47 8.51 8.20 8.09 7.77 

RHx V3i 82.82 68.42 56.56 46.56 41.49 

Xmitt V4
i 0.64 0.65 0.65 0.64 0.64 

Trend V5i 2.16 2.41 2.01 2.04 1.38 

RH V6i 88.00 72.5£1 59.47 47.17 32.67 

OZ48 V7
i 0.11 0.12 0.14 0.06 0.37 

Traj Va' 0.15 0.22 0.28 0.15 0.30 

CC Vg
i 7.64 4.39 2.01 1.27 0.70 

Table A.16 Coefficients a i for basic-fuzzy system model (Lexington) 

Variables Coefficient Rule 1 Rule 2 Rule 3 Rule 4 Rule S 

Intercept ao -23.21 -87.72 -130.23 -254.60 -164.64 

Tmax a1 0.31 0.36 0.47 0.76 1.03 

WS a2 -0.19 -0.64 -0.69 -0.24 -0.20 

RHx a3 -0.01 -0.21 -0.32 -0.43 -0.56 

Xmitt a4 113.55 243.40 297.52 427.81 274.76 

Trend a5 -0.53 -1.23 -1.59 0.08 -1.22 

RH as -0.35 -0.38 -0.23 0.00 -0.15 

OZ48 a7 5.93 7.25 8.25 10.01 10.85 

Traj aa 4.07 1.65 0.88 3.77 -0.93 

CC ag -0.51 -0.5e -1.18 -0.48 0.88 
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Table A17 Final cluster centers Vi for NLR-fuzzy system model (Owensboro) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 
Center 

Nonlin V/ 41.27 56.8~r 52.82 72.01 99.17 

Xmitt V2
i 0.65 0.65 0.64 0.65 0.64 

Trend V3
i 2.07 1.95 2.04 2.30 0.61 

Tmn_dep V4
i 4.78 5.00 -8.31 1.21 -2.23 

CC Vsi 6.70 2.70 1.58 1.28 0.62 

Dewpt V6
i 68.10 72.115 47.22 68.50 54.10 

WS V7
i 8.03 9.30 9.23 6.97 4.74 

Table A18 Coefficients a j for NLR-fuzzy system model (Owensboro) 

Variables Coefficient Rule 1 RuIE,2 Rule 3 Rule4 Rule 5 

Intercept ao -154.70 -207.83 -287.32 -292.12 -179.63 

Nonlin a1 0.83 0.88 0.95 0.96 0.90 

Xmitt a2 304.87 401.49 470.80 507.00 338.38 

Trend a3 -0.56 -0.95 0.23 -0.71 -2.37 

Tmn_dep a4 0.05 0.34 0.36 0.27 1.07 

CC as -0.79 -1.6? -0.12 -1.10 -2.27 

Dewpt a6 -0.40 -0.5'1 -0.18 -0.44 -0.40 

WS a7 -0.27 -0.62 -0.19 0.08 0.66 

Table A19 Final cluster centers Vi for basic-fuzzy system model (Owensboro) 

Variables 
Cluster 

Rule 1 RuIE,2 Rule 3 Rule 4 Rule 5 
Center 

Tmax V/ 77.87 87.02 91.59 84.14 72.12 

WS V2
i 7.23 8.62 7.25 6.96 8.66 

RHx V3
i 82.35 65.85 51.97 45.55 44.59 

Xmitt V4
i 0.64 0.65 0.65 0.65 0.64 

Trend Vsi 2.00 1.91 2.21 1.97 2.00 

Tmn_dep V6
i 5.51 5.22 3.84 -5.78 -9.59 

CC V7
i 6.80 3.09 1.29 1.27 1.42 

Dewpt VB
i 69.66 72.00 71.40 60.12 45.14 

Table A20 Coefficients a i for basic-fuzzy system model (Owensboro) 

Variables Coefficient Rule 1 Ruh~ 2 Rule 3 Rule 4 Rule 5 

Intercept ao -194.85 -158.97 -312.75 -247.86 -265.10 

Tmax a1 1.16 0.8L~ 1.43 1.67 0.98 

WS a2 -0.62 -0.98 -1.01 -0.51 -0.16 

RHx a3 -0.27 -0.46 -0.56 -0.57 -0.67 

Xmitt a4 361.58 357.27 530.71 370.17 457.46 

Trend as -0.15 -0.99 -1.15 -0.31 0.43 

Tmn_dep a6 -0.06 0.17" 0.24 0.35 0.51 

CC a7 -0.71 -1.58 -0.72 0.60 0.47 

Dewpt aB -0.84 -0.62 -0.72 -0.54 -0.25 
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Table A.2l Final cluster centers Vi for NLR-fuzzy system model (Paducah) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 
Center 

Nonlin V/ 41.59 58.413 52.22 75.09 86.82 

Xmitt V2
i 0.65 0.65 0.64 0.65 0.64 

Trend V3
i 2.25 2.09 2.17 2.16 1.00 

Tmn_dep V4
i 6.25 4.91 -7.14 3.71 -7.15 

CC Vsi 6.04 2.27 1.56 1.37 0.54 

Dewpt V6i 68.82 71.4'7 47.62 71.17 52.93 

ws V/ 7.07 8.04 9.07 6.24 5.19 

Table A.22 Coefficients a i for NLR-fuzzy system model (Paducah) 

Variables Coefficient Rule 1 RuIE,2 Rule 3 Rule4 Rule 5 

Intercept ao -124.89 -121.62 -291.05 -242.08 -161.47 

Nonlin a1 0.66 0.85 0.83 1.01 1.06 

Xmitt a2 287.27 250.78 473.59 447.69 251.85 

Trend a3 0.73 -O.H; -0.47 -1.09 -0.66 

Tmn_dep a4 0.09 0.02 0.26 0.37 0.31 

CC as -1.48 -1.72 -0.43 -1.75 -0.34 

Dewpt a6 -0.61 -0.35 0.01 -0.68 0.01 

WS a7 -0.10 -0.50 -0.17 0.10 -0.16 

Table A.23 Final cluster centers Vi for basic-fuzzy system model (Paducah) 

Variables 
Cluster 

Rule 1 RuIE,2 Rule 3 Rule4 Rule 5 
Center 

Tmax V1
i 77.73 88.72 93.24 84.92 71.45 

WS V2
i 6.01 8.13 6.92 6.65 9.91 

RHx V3
i 83.67 63.92 48.41 37.58 49.32 

Xmitt V4
i 0.65 0.65 0.65 0.64 0.64 

Trend VSi 2.07 2.16 2.14 1.88 2.22 

Tmn_dep V6i 5.53 6.21 3.63 -7.82 -7.25 

CC V7
i 6.72 2.79 1.37 0.92 2.38 

Dewpt Vai 69.42 72.26 70.30 54.91 45.36 

Table A.24 Coefficients a i for basic-fuzzy system model (Paducah) 

Variables Coefficient Rule 1 Ruh~ 2 Rule 3 Rule 4 Rule 5 

Intercept ao -115.64 -14E1.41 -146.51 -223.24 -274.81 

Tmax a1 0.39 1.30 1.34 1.36 0.95 

WS a2 -0.16 -1.23 -0.89 -1.04 -0.49 

RHx a3 -0.23 -0.35 -0.36 -0.64 -0.39 

Xmitt a4 300.99 281..93 276.26 345.92 446.06 

Trend as 1.12 0.14 -0.94 -0.79 -0.05 

Tmn_dep a6 -0.04 -0.15 0.03 0.37 0.16 

CC a7 -1.80 -1.08 -1.94 -0.49 -0.25 

Dewpt aa -0.63 -0.83 -0.84 -0.15 -0.13 
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Appendix C. Time Series Plots for NLR-fuzzy Ozone forecast Models 
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Figure Al Time series of observed 8-hr ozone concentrations and NLR-fuzzy model hindcasts and forecasts for May and June, 2004. 
(Ashland) 
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Figure A2 Time series of observed 8-hr ozone concentrations and NLR-fuzzy model hindcasts and forecasts for May and June, 2004_ 
(Bowling Green) 
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Appendix D. Parameters for NLR-fuzzy PM2.5 Forecast Models 

Table A.25 Final cluster centers Vi for NLR-fuzzy system model (Bowling Green) 

Variables 
Cluster 

Rule 1 Rule 2 Rule 3 Rule4 RuleS 
Center 

Nonlin v1 8.01 13.21 18.12 22.78 24.86 

Trend ,; 2.75 1.17 2.53 3.24 0.11 

CC v3 4.47 1.85 1.61 1.29 1.93 

Table A.26 Coefficients a i for NLR-fuzzy system model (Bowling Green) 

Variables Coefficient Rule 1 RulEl2 Rule 3 Rule4 RuleS 

Intercept ao 0.68 3.25 0.71 -11.78 -1.98 

Nonlin a1 0.80 0.75 0.96 1.49 1.09 

Trend a2 0.20 -0.55 -0.06 -0.03 0.62 

CC a3 0.44 0.58 -0.18 0.47 0.30 

Table A.27 Final cluster centers Vi for NLR-fuzzy system model (Covington) 

Variables 
Cluster 

Rule 1 Rull~ 2 Rule 3 Rule 4 RuleS 
Center 

Nonlin v1 12.73 1355 22.34 19.03 30.13 

Dewpt ,; 36.71 48.58 58.35 68.13 71.13 

Rain v3 0.01 0.11 0.01 0.39 0.12 

CC v4 3.31 6.08 3.89 8.11 5.75 

Windrose V
S -0.29 -0.16 0.03 0.42 -0.02 

Hoi v6 0.00 0.00 0.00 0.01 0.04 

Sat / 0.15 0.20 0.16 0.16 0.14 

Table A.28 Coefficients a i for NLR-fuzzy system model (Covington) 

Variables Coefficient Rule 1 Rule 2 Rule 3 Rule4 RuleS 

Intercept ao -0.39 -10.93 -14.12 2.25 -10.56 

Nonlin a1 0.63 0.55 0.73 0.59 1.07 

Dewpt a2 0.14 0.31 0.29 0.09 0.14 

Rain a3 1.73 -3:16 -2.06 -3.67 -3.74 

CC a4 -0.15 0.37 0.37 0.26 0.06 

Wind rose as 2.87 1.82 2.92 2.34 2.98 

Hoi a6 15.99 13.39 12.76 3.19 5.11 

Sat a7 -2.94 -0.l6 -2.40 -2.54 -1.96 
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Table A.29 Final cluster centers Vi for NLR-fuzzy system model (Lexington) 

Variables Cluster Rule 1 Rule 2 Rule 3 Rule4 Rule 5 
Center 

Nonlin v1 16.81 12.75 17.72 15.76 25.25 

Trend I- 0.63 1.86 1.76 2.00 1.91 

Dewpt v3 32.31 44.90 56.90 68.50 70.74 

Rain l 0.00 0.02 0.02 0.37 0.08 

Hoi V
S 0.00 0.00 0.00 0.00 0.00 

Traj va 0.69 0.08 0.17 0.06 0.25 

OZ48 v7 0.00 0.03 0.09 0.08 0.13 

Table A.30 Coefficients a i for NLR-fuzzy system model (Lexington) 

Variables Coefficient Rule 1 Rulli 2 Rule 3 Rule 4 Rule 5 

Intercept ao -5.97 -10."75 -5.87 13.82 -20.40 

Nonlin a1 1.17 0.4: 0.48 0.90 1.24 

Trend a2 1.52 0.3:. 0.57 -0.29 -0.01 

Dewpt a3 -0.07 0.3e, 0.22 -0.17 0.20 

Rain a4 3.25 -5.98 -3.08 -0.52 -8.09 

Hoi as 24.24 28.15 29.91 24.81 23.50 

Traj aa -2.51 6.82 1.56 1.57 2.39 

OZ48 a7 5.40 -6.64 7.82 2.93 7.25 

Table A.31 Final cluster centers Vi for NLR-fuzzy system model (Louisville) 

Variables Cluster Rule 1 Rul'e 2 Rule 3 Rule 4 Rule 5 
Center 

Nonlin v1 10.17 12.87 22.64 21.33 33.01 

Trend I- 2.17 1.9:\ 1.94 2.08 1.98 

Dewpt v3 37.57 48.!l6 61.10 69.81 70.68 

Rain v4 0.01 O.Oi' 0.02 0.28 0.06 

Windrose V
S 0.02 -0.19 0.03 0.43 0.05 

Hoi va 0.00 0.00 0.00 0.00 0.01 

Sat / 0.12 0.1a 0.14 0.16 0.15 

Tmn_dep VB -13.16 -624 -3.41 5.25 6.14 

Traj v9 0.21 0.11 0.29 0.12 0.46 

OZ48 v10 0.00 0.01 0.08 0.10 0.19 
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Table A.32 Coefficients a i for NLR·fuzzy system model (Louisville) 

Variables Coefficient Rule 1 RulE! 2 Rule 3 Rule4 Rule 5 

Intercept ao -7.81 -5.n -8.87 10.23 -7.86 

Nonlin a1 0.52 0.27 0.43 0.76 0.64 

Trend a2 0.78 0.23 0.34 -0.15 1.03 

Dewpt a3 0.23 0.30 0.31 -0.10 0.20 

Rain a4 0.15 -2.40 -5.72 -2.37 -7.41 

Windrose as 1.21 1.86 3.92 1.86 1.10 

Hoi a6 32.35 29.93 18.76 16.31 30.60 

Sat a7 -2.71 -1.0l -2.43 -1.24 -1.43 

Tmn_dep as 0.02 0.06 0.22 0.08 0.13 

Traj ag 3.88 4.75 3.16 5.24 7.16 

OZ48 a10 7.57 4.21 6.89 6.82 3.88 

Table A.33 Final cluster centers Vi for NLR-fuzzy system model (Owensboro) 

Variables 
Cluster 

Rule 1 RulE! 2 Rule 3 Rule4 Rule 5 
Center 

Nonlin v1 8.40 13.00 23.88 14.90 27.13 

Trend i 1.38 2.42 1.89 1.96 1.94 

Dewpt v3 33.83 48.37 60.33 68.83 72.71 

Windrose v4 -0.40 -0.2B -0.08 0.17 -0.09 

Hoi V
S 0.00 0.00 0.00 0.00 0.00 

Table A.34 Coefficients a i for NLR-fuzzy system model (Owensboro) 

Variables Coefficient Rule 1 Ruhl2 Rule 3 Rule4 Rule 5 

Intercept ao -5.49 -10.73 -18.60 8.72 -7.75 

Nonlin a1 0.55 0.65 1.02 0.65 1.16 

Trend a2 0.41 -0.08 0.11 -1.43 -0.36 

Dewpt a3 0.20 0.31 0.29 0.02 0.05 

Wind rose a4 0.77 0.93 0.60 0.42 1.76 

Hoi as 36.01 31.47 26.47 36.45 28.76 
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Table A.35 Final cluster centers Vi for NLR-fuzzy system model (Paducah) 

Variables Cluster Rule 1 RuIE,2 Rule 3 Rule4 Rule 5 
Center 

Nonlin y1 7.20 13.46 18.08 22.51 29.30 

Trend .; 1.91 2.37 2.56 0.85 2.73 

Windrose y3 0.13 0.05 0.16 0.19 0.03 

Hoi y4 0.00 0.00 0.00 0.00 0.23 

Table A.36 Coefficients a i for NLR-fuzzy system model (Paducah) 

Variables Coefficient Rule 1 RuIE~ 2 Rule 3 Rule 4 Rule 5 

Intercept ao 2.00 3.25 7.48 -6.42 0.04 

Nonlin a1 0.89 0.76 0.56 1.31 1.03 

Trend a2 -0.04 -0.2l~ 0.27 -0.55 0.02 

Windrose a3 1.75 1.70 -0.34 2.55 -5.53 

Hoi a4 16.69 19.77 19.70 14.32 14.34 
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